論文の概要: Identification in Tree-shaped Linear Structural Causal Models
- arxiv url: http://arxiv.org/abs/2203.01852v1
- Date: Thu, 3 Mar 2022 16:59:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-04 20:33:05.772504
- Title: Identification in Tree-shaped Linear Structural Causal Models
- Title(参考訳): 木型線形構造因果モデルにおける同定
- Authors: Benito van der Zander, Marcel Wien\"obst, Markus Bl\"aser, Maciej
Li\'skiewicz
- Abstract要約: そこで本研究では,有向成分が木を形成するモデルについて検討し,二方向エッジの欠落サイクルがモデル同定に有効であることを示す。
複数の欠落したサイクルが組み合わさってユニークな解が得られることを示す。
- 参考スコア(独自算出の注目度): 4.751074059099236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linear structural equation models represent direct causal effects as directed
edges and confounding factors as bidirected edges. An open problem is to
identify the causal parameters from correlations between the nodes. We
investigate models, whose directed component forms a tree, and show that there,
besides classical instrumental variables, missing cycles of bidirected edges
can be used to identify the model. They can yield systems of quadratic
equations that we explicitly solve to obtain one or two solutions for the
causal parameters of adjacent directed edges. We show how multiple missing
cycles can be combined to obtain a unique solution. This results in an
algorithm that can identify instances that previously required approaches based
on Gr\"obner bases, which have doubly-exponential time complexity in the number
of structural parameters.
- Abstract(参考訳): 線形構造方程式モデルは、直接因果効果を有向エッジとして、共起因子を有向エッジとして表現する。
オープンな問題は、ノード間の相関から因果パラメータを特定することである。
我々は,有向成分が木を形成するモデルを調査し,古典的インストゥルメンタル変数の他に,二方向エッジの欠落サイクルを用いてモデルを特定することができることを示す。
隣り合う有向エッジの因果パラメータの1つまたは2つの解を得るために、明確に解ける二次方程式の系が得られる。
複数の欠落サイクルを組み合わせることで、一意な解を得る方法を示す。
これにより、以前に必要であったgr\"obner基底に基づくアプローチのインスタンスを識別できるアルゴリズムが作成され、構造パラメータの数の2倍の時間複雑性を持つ。
関連論文リスト
- Identifying General Mechanism Shifts in Linear Causal Representations [58.6238439611389]
我々は,未知の潜在因子の線形混合を観測する線形因果表現学習環境について考察する。
近年の研究では、潜伏要因の復元や、それに基づく構造因果モデルの構築が可能であることが示されている。
非常に穏やかな標準仮定の下では、シフトしたノードの集合を識別することが可能である。
論文 参考訳(メタデータ) (2024-10-31T15:56:50Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - On the Complexity of Identification in Linear Structural Causal Models [3.44747819522562]
空間内で動作するジェネリック識別のための,新しい音響および完全アルゴリズムを提案する。
また,同定が一般に困難であることを示す。
論文 参考訳(メタデータ) (2024-07-17T13:11:26Z) - Root Cause Explanation of Outliers under Noisy Mechanisms [50.59446568076628]
因果過程は、しばしばグラフとしてモデル化され、エンティティはノードであり、パス/インターコネクションはエッジである。
既存の作業は、生成プロセスにおけるノードの寄与のみを考慮している。
根本原因を特定する際,各メカニズムの個々のエッジとノードについて検討する。
論文 参考訳(メタデータ) (2023-12-19T03:24:26Z) - Identification for Tree-shaped Structural Causal Models in Polynomial
Time [1.5151556900495786]
ノード間の相関から因果パラメータを同定することは、人工知能におけるオープンな問題である。
本稿では,木を配向成分とするSCMについて検討する。
本稿では,木形SCMの同定問題を解くランダム時間アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-23T15:26:29Z) - Tractable Bounding of Counterfactual Queries by Knowledge Compilation [51.47174989680976]
本稿では, パール構造因果モデルにおいて, 因果関係などの部分的特定可能なクエリのバウンダリングの問題について議論する。
最近提案された反復EMスキームは初期化パラメータをサンプリングしてそれらの境界を内部近似する。
シンボルパラメータを実際の値に置き換えた回路構造を,単一のシンボル知識コンパイルによって得られることを示す。
論文 参考訳(メタデータ) (2023-10-05T07:10:40Z) - Causal Discovery in Linear Latent Variable Models Subject to Measurement
Error [29.78435955758185]
線形系における測定誤差の存在下での因果発見に着目した。
我々は、この問題と因果発見の驚くべき関連性を、観察されていない親性原因の存在で示している。
論文 参考訳(メタデータ) (2022-11-08T03:43:14Z) - Staged trees and asymmetry-labeled DAGs [2.66269503676104]
本稿では,実生木を最小のベイズネットワークで表現し,直感的に条件付き独立性を読み取る方法を提案する。
また,非対称性ラベル付き有向非巡回グラフ (asymmetric-labeled direct acyclic graph) と呼ばれる新しいラベル付きグラフも定義する。
論文 参考訳(メタデータ) (2021-08-04T12:20:47Z) - Convex Polytope Trees [57.56078843831244]
コンベックスポリトープ木(CPT)は、決定境界の解釈可能な一般化によって決定木の系統を拡張するために提案される。
木構造が与えられたとき,木パラメータに対するCPTおよび拡張性のあるエンドツーエンドトレーニングアルゴリズムを効率的に構築する。
論文 参考訳(メタデータ) (2020-10-21T19:38:57Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - Structure Learning for Cyclic Linear Causal Models [5.567377163246147]
観測データに基づく線形因果モデルにおける構造学習の問題点を考察する。
循環型混成グラフによって与えられるモデルを扱うことで、フィードバックループと潜伏した共同設立者の影響を可能とします。
論文 参考訳(メタデータ) (2020-06-10T17:47:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。