Quantum Levenberg--Marquardt Algorithm for optimization in Bundle
Adjustment
- URL: http://arxiv.org/abs/2203.02311v1
- Date: Fri, 4 Mar 2022 13:38:21 GMT
- Title: Quantum Levenberg--Marquardt Algorithm for optimization in Bundle
Adjustment
- Authors: Luca Bernecker and Andrea Idini
- Abstract summary: We implement a quantum algorithm for solving the linear system of normal equations that calculates the optimization step in Levenberg--Marquardt.
The proposed quantum algorithm dramatically reduces the complexity of this operation with respect to the number of points.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we develop a quantum optimization algorithm and use it to solve
the bundle adjustment problem with a simulated quantum computer. Bundle
adjustment is the process of optimizing camera poses and sensor properties to
best reconstruct the three-dimensional structure and viewing parameters. This
problem is often solved using some implementation of the Levenberg--Marquardt
algorithm. In this case we implement a quantum algorithm for solving the linear
system of normal equations that calculates the optimization step in
Levenberg--Marquardt. This procedure is the current bottleneck in the
algorithmic complexity of bundle adjustment. The proposed quantum algorithm
dramatically reduces the complexity of this operation with respect to the
number of points.
We investigate 9 configurations of a toy-model for bundle adjustment, limited
to 10 points and 2 cameras. This optimization problem is solved both by using
the sparse Levenberg-Marquardt algorithm and our quantum implementation. The
resulting solutions are presented, showing an improved rate of convergence,
together with an analysis of the theoretical speed up and the probability of
running the algorithm successfully on a current quantum computer.
The presented quantum algorithm is a seminal implementation of using quantum
computing algorithms in order to solve complex optimization problems in
computer vision, in particular bundle adjustment, which offers several avenues
of further investigations.
Related papers
- Benchmarking Variational Quantum Algorithms for Combinatorial Optimization in Practice [0.0]
Variational quantum algorithms and, in particular, variants of the varational quantum eigensolver have been proposed to address optimization (CO) problems.
We numerically investigate what this scaling result means in practice for solving CO problems using Max-Cut as a benchmark.
arXiv Detail & Related papers (2024-08-06T09:57:34Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Optimizing the Phase Estimation Algorithm Applied to the Quantum
Simulation of Heisenberg-Type Hamiltonians [0.0]
The phase estimation algorithm is a powerful quantum algorithm with applications in cryptography, number theory, and simulation of quantum systems.
We use this algorithm to simulate the time evolution of a system of two spin-1/2 particles under a Heisenberg Hamiltonian.
We introduce three optimizations to the algorithm: circular, iterative, and Bayesian.
arXiv Detail & Related papers (2021-05-07T21:41:08Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.