Differentiable Causal Discovery Under Latent Interventions
- URL: http://arxiv.org/abs/2203.02336v1
- Date: Fri, 4 Mar 2022 14:21:28 GMT
- Title: Differentiable Causal Discovery Under Latent Interventions
- Authors: Gon\c{c}alo R. A. Faria, Andr\'e F. T. Martins, M\'ario A. T.
Figueiredo
- Abstract summary: Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown.
We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system.
We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture.
- Score: 3.867363075280544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has shown promising results in causal discovery by leveraging
interventional data with gradient-based methods, even when the intervened
variables are unknown. However, previous work assumes that the correspondence
between samples and interventions is known, which is often unrealistic. We
envision a scenario with an extensive dataset sampled from multiple
intervention distributions and one observation distribution, but where we do
not know which distribution originated each sample and how the intervention
affected the system, \textit{i.e.}, interventions are entirely latent. We
propose a method based on neural networks and variational inference that
addresses this scenario by framing it as learning a shared causal graph among
an infinite mixture (under a Dirichlet process prior) of intervention
structural causal models. Experiments with synthetic and real data show that
our approach and its semi-supervised variant are able to discover causal
relations in this challenging scenario.
Related papers
- Learning Mixtures of Unknown Causal Interventions [14.788930098406027]
We consider the challenge of disentangling mixed interventional and observational data within Structural Equation Models (SEMs)
We demonstrate that conducting interventions, whether do or soft, yields distributions with sufficient diversity and properties to efficiently recovering each component within the mixture.
As a result, the causal graph can be identified up to its interventional Markov Equivalence Class, similar to scenarios where no noise influences the generation of interventional data.
arXiv Detail & Related papers (2024-10-31T21:25:11Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Bayesian Causal Inference with Gaussian Process Networks [1.7188280334580197]
We consider the problem of the Bayesian estimation of the effects of hypothetical interventions in the Gaussian Process Network model.
We detail how to perform causal inference on GPNs by simulating the effect of an intervention across the whole network and propagating the effect of the intervention on downstream variables.
We extend both frameworks beyond the case of a known causal graph, incorporating uncertainty about the causal structure via Markov chain Monte Carlo methods.
arXiv Detail & Related papers (2024-02-01T14:39:59Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
We prove strong identifiability results given unknown single-node interventions without access to the intervention targets.
This is the first instance of causal identifiability from non-paired interventions for deep neural network embeddings.
arXiv Detail & Related papers (2023-06-04T02:32:12Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Learning Invariant Representations under General Interventions on the
Response [2.725698729450241]
We focus on linear structural causal models (SCMs) and introduce invariant matching property (IMP)
We analyze the generalization errors of our method under both the discrete and continuous environment settings.
arXiv Detail & Related papers (2022-08-22T03:09:17Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDI operates in the continuous space of latent probabilistic representations of both causal structures and interventions.
In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets.
arXiv Detail & Related papers (2022-06-03T16:25:48Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables.
We define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown.
arXiv Detail & Related papers (2022-05-05T12:32:08Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.