Quantum Fluctuations Suppress the Critical Fields in BaCo$_2$(AsO$_4$)$_2$
- URL: http://arxiv.org/abs/2403.15315v1
- Date: Fri, 22 Mar 2024 16:08:39 GMT
- Title: Quantum Fluctuations Suppress the Critical Fields in BaCo$_2$(AsO$_4$)$_2$
- Authors: Shiva Safari, William Bateman-Hemphill, Asimpunya Mitra, Félix Desrochers, Emily Z. Zhang, Lubuna Shafeek, Austin Ferrenti, Tyrel M. McQueen, Arkady Shekhter, Zoltán Köllö, Yong Baek Kim, B. J. Ramshaw, K. A. Modic,
- Abstract summary: BaCo$$(AsO$_4$)$$ recently emerged as a candidate host for bond-dependent (e.g. Kitaev) and third-neighbor ($J_3$) interactions.
We map out the intermediate and high-field phase diagram of BaCo$$(AsO$_4$)$ as a function of the out-of-plane magnetic field direction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early efforts to realize exotic quantum ground states in frustrated magnets focused on frustration arising from the lattice geometry alone. Attention has shifted to bond-dependent anisotropic interactions, as well as further-neighbor interactions, on non-geometrically-frustrated lattices due to their greater versatility. The honeycomb magnet BaCo$_2$(AsO$_4$)$_2$ recently emerged as a candidate host for both bond-dependent (e.g. Kitaev) and third-neighbor ($J_3$) interactions, and has become a model experimental system due to its relatively low levels of disorder. Understanding the relative importance of different exchange interactions holds the key to achieving novel ground states, such as quantum spin liquids. Here, we use the magnetotropic susceptibility to map out the intermediate and high-field phase diagram of BaCo$_2$(AsO$_4$)$_2$ as a function of the out-of-plane magnetic field direction at $T = 1.6$ K. We show that the experimental data are qualitatively consistent with classical Monte Carlo results of the XXZ-$J_1$-$J_3$ model with small Kitaev and off-diagonal exchange couplings included. However, the calculated critical fields are systematically larger than the experimental values. Infinite-DMRG computations on the quantum model reveal that quantum corrections from a nearby ferromagnetic state are likely responsible for the suppressed critical fields. Together, our experiment and theory analyses demonstrate that, while quantum fluctuations play an important role in determining the phase diagram, most of the physics of BaCo$_2$(AsO$_4$)$_2$ can be understood in terms of the classical dynamics of long-range ordered states, leaving little room for the possibility of a quantum spin liquid.
Related papers
- Itinerant magnetism in Hubbard models with long-range interactions [0.0]
A wide variety of platforms, ranging from semiconductor quantum-dot arrays to mo'e materials, have recently emerged as powerful quantum simulators.
We investigate the effects of the Hubbard model which includes long-dimensional lattices.
For small electron dopings, we uncover a rich variety of magnetically ordered numerically states.
arXiv Detail & Related papers (2024-10-01T18:00:00Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Cooperative quantum tunneling of the magnetization in Fe-doped Li$_3$N [0.0]
The spin-reversal in dilute Li$$$(Li$_1-x$Fe$_x$)N with $x 1$ % is dominated by resonant quantum tunneling of spatially well-separated states.
We report on the effect of finite couplings between those states that give rise to cooperative, simultaneous quantum tunneling of two spins.
arXiv Detail & Related papers (2023-10-27T14:59:42Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Gapless quantum spin liquid and global phase diagram of the spin-1/2
$J_1$-$J_2$ square antiferromagnetic Heisenberg model [1.2728971015881008]
We show that the intermediate nonmagnetic phase is a gapless quantum spin liquid (QSL), whose spin-spin and dimer-dimer correlations both decay with a power law behavior.
We make the first detailed comparison between the results of PEPS and the well-established density matrix renormalization group (DMRG) method through one-to-one direct benchmark for small system sizes.
arXiv Detail & Related papers (2020-09-03T17:39:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.