Complex Field Formulation of the Quantum Estimation Theory
- URL: http://arxiv.org/abs/2203.03064v1
- Date: Sun, 6 Mar 2022 22:34:30 GMT
- Title: Complex Field Formulation of the Quantum Estimation Theory
- Authors: M. Mu\~noz, L. Pereira, S. Niklitschek, and A. Delgado
- Abstract summary: We present a complex field formulation of the quantum Fisher estimation theory that works with complex statistics on the dependence of complex parameters.
This can be useful in contexts where the quantum states are described through complex parameters, as coherent states or squeezed states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a complex field formulation of the quantum Fisher estimation
theory that works natively with complex statistics on the dependence of complex
parameters. This states new complex versions of the main quantities and results
of the estimation theory depending on complex parameters, such as Fisher
information matrices and Cram\'er-Rao bounds. This can be useful in contexts
where the quantum states are described through complex parameters, as coherent
states or squeezed states. We show an application of our theory in quantum
communication with coherent states.
Related papers
- On the Complexity of Quantum Field Theory [0.0]
We show that from minimal assertions, one is naturally led to measure complexity by two integers, called format and degree.
We discuss the physical interpretation of our approach in the context of perturbation theory, symmetries, and the renormalization group.
arXiv Detail & Related papers (2024-10-30T18:00:00Z) - Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Krylov Complexity of Fermionic and Bosonic Gaussian States [9.194828630186072]
This paper focuses on emphKrylov complexity, a specialized form of quantum complexity.
It offers an unambiguous and intrinsically meaningful assessment of the spread of a quantum state over all possible bases.
arXiv Detail & Related papers (2023-09-19T07:32:04Z) - Quantum Kolmogorov complexity and quantum correlations in
deterministic-control quantum Turing machines [0.9374652839580183]
This work presents a study of Kolmogorov complexity for general quantum states from the perspective of deterministic-control quantum Turing Machines (dcq-TM)
We extend the dcq-TM model to incorporate mixed state inputs and outputs, and define dcq-computable states as those that can be approximated by a dcq-TM.
arXiv Detail & Related papers (2023-05-23T17:07:58Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - The complexity of a quantum system and the accuracy of its description [0.0]
The complexity of the quantum state of a multiparticle system is connected by a relation similar to the coordinate-momentum uncertainty relation.
The coefficient in this relation is equal to the maximum number of qubits whose dynamics can be adequately described by quantum theory.
arXiv Detail & Related papers (2021-05-06T09:16:40Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Resource theory of imaginarity: Quantification and state conversion [48.7576911714538]
Resource theory of imaginarity has been introduced, allowing for a systematic study of complex numbers in quantum mechanics and quantum information theory.
We investigate imaginarity quantification, focusing on the geometric imaginarity and the robustness of imaginarity, and apply these tools to the state conversion problem in imaginarity theory.
Our study reveals the significance of complex numbers in quantum physics, and proves that imaginarity is a resource in optical experiments.
arXiv Detail & Related papers (2021-03-02T15:30:27Z) - Experimental entanglement characterization of two-rebit states [0.0]
We characterize entanglement subject to its definition over real and complex, composite quantum systems.
We then realize two-photon polarization states that are entangled with respect to the notion of two rebits.
At the same time, the generated states are separable with respect to two complex qubits.
arXiv Detail & Related papers (2021-02-02T11:51:14Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.