Undersampled MRI Reconstruction with Side Information-Guided
Normalisation
- URL: http://arxiv.org/abs/2203.03196v1
- Date: Mon, 7 Mar 2022 08:04:08 GMT
- Title: Undersampled MRI Reconstruction with Side Information-Guided
Normalisation
- Authors: Xinwen Liu, Jing Wang, Cheng Peng, Shekhar S. Chandra, Feng Liu, S.
Kevin Zhou
- Abstract summary: We investigate the use of appearance-related side information as normalisation parameters in a convolutional neural network (CNN) to improve undersampled MRI reconstruction.
Specifically, a Side Information-Guided Normalisation (SIGN) module, containing only few layers, is proposed to efficiently encode the side information and output the normalisation parameters.
- Score: 20.28262806301981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance (MR) images exhibit various contrasts and appearances
based on factors such as different acquisition protocols, views, manufacturers,
scanning parameters, etc. This generally accessible appearance-related side
information affects deep learning-based undersampled magnetic resonance imaging
(MRI) reconstruction frameworks, but has been overlooked in the majority of
current works. In this paper, we investigate the use of such side information
as normalisation parameters in a convolutional neural network (CNN) to improve
undersampled MRI reconstruction. Specifically, a Side Information-Guided
Normalisation (SIGN) module, containing only few layers, is proposed to
efficiently encode the side information and output the normalisation
parameters. We examine the effectiveness of such a module on two popular
reconstruction architectures, D5C5 and OUCR. The experimental results on both
brain and knee images under various acceleration rates demonstrate that the
proposed method improves on its corresponding baseline architectures with a
significant margin.
Related papers
- Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction [3.9681863841849623]
We build a joint edge optimization model that not only incorporates individual regularizers specific to both the MR image and the edges, but also enforces a co-regularizer to effectively establish a stronger correlation between them.
Specifically, the edge information is defined through a non-edge probability map to guide the image reconstruction during the optimization process.
Meanwhile, the regularizers pertaining to images and edges are incorporated into a deep unfolding network to automatically learn their respective inherent a-priori information.
arXiv Detail & Related papers (2024-05-09T05:51:33Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Implicit Neural Representation for MRI Parallel Imaging Reconstruction [34.936667344452964]
Implicit neural representation (INR) has emerged as a promising deep learning technique.
We propose a novel MRI reconstruction method that uses INR.
Our approach represents reconstructed fully-sampled images as functions of voxel coordinates and prior feature vectors from undersampled images.
arXiv Detail & Related papers (2023-09-12T09:07:03Z) - Attention Hybrid Variational Net for Accelerated MRI Reconstruction [7.046523233290946]
The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem.
This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image.
We propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domain.
arXiv Detail & Related papers (2023-06-21T16:19:07Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Edge-Enhanced Dual Discriminator Generative Adversarial Network for Fast
MRI with Parallel Imaging Using Multi-view Information [10.616409735438756]
We introduce a novel parallel imaging coupled dual discriminator generative adversarial network (PIDD-GAN) for fast multi-channel MRI reconstruction.
One discriminator is used for holistic image reconstruction, whereas the other one is responsible for enhancing edge information.
Results show that our PIDD-GAN provides high-quality reconstructed MR images, with well-preserved edge information.
arXiv Detail & Related papers (2021-12-10T10:49:26Z) - Deep MRI Reconstruction with Radial Subsampling [2.7998963147546148]
Retrospectively applying a subsampling mask onto the k-space data is a way of simulating the accelerated acquisition of k-space data in real clinical setting.
We compare and provide a review for the effect of applying either rectilinear or radial retrospective subsampling on the quality of the reconstructions outputted by trained deep neural networks.
arXiv Detail & Related papers (2021-08-17T17:45:51Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.