論文の概要: Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion
Processing and Analysis
- arxiv url: http://arxiv.org/abs/2203.03311v2
- Date: Wed, 9 Mar 2022 06:06:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 12:20:21.845156
- Title: Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion
Processing and Analysis
- Title(参考訳): 深層学習に基づく3次元クラウド補完処理と解析の総合的レビュー
- Authors: Ben Fei, Weidong Yang, Wenming Chen, Zhijun Li, Yikang Li, Tao Ma,
Xing Hu, Lipeng Ma
- Abstract要約: 本研究の目的は、ポイントベース、畳み込みベース、グラフベース、生成モデルベースアプローチなど、様々な手法に関する包括的な調査を行うことである。
このレビューでは、よく使われるデータセットをまとめ、ポイントクラウド補完の応用について説明する。
- 参考スコア(独自算出の注目度): 14.203228394483117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud completion is a generation and estimation issue derived from the
partial point clouds, which plays a vital role in the applications in 3D
computer vision. The progress of deep learning (DL) has impressively improved
the capability and robustness of point cloud completion. However, the quality
of completed point clouds is still needed to be further enhanced to meet the
practical utilization. Therefore, this work aims to conduct a comprehensive
survey on various methods, including point-based, convolution-based,
graph-based, and generative model-based approaches, etc. And this survey
summarizes the comparisons among these methods to provoke further research
insights. Besides, this review sums up the commonly used datasets and
illustrates the applications of point cloud completion. Eventually, we also
discussed possible research trends in this promptly expanding field.
- Abstract(参考訳): ポイント・クラウド・コンプリート(point cloud completion)は、3dコンピュータ・ビジョンにおけるアプリケーションにおいて重要な役割を果たす部分的ポイント・クラウドに由来する生成と推定の問題である。
ディープラーニング(DL)の進歩は、ポイントクラウド補完の能力と堅牢性を大幅に改善しました。
しかし, 実用的利用を実現するためには, 完成点雲の品質をさらに高める必要がある。
そこで本研究では,ポイントベース,畳み込みベース,グラフベース,生成モデルベースなど,様々な手法に関する総合的な調査を行う。
この調査は、これらの方法の比較を要約し、さらなる研究の洞察を与えます。
さらに、このレビューは一般的に使われているデータセットをまとめ、ポイントクラウド補完の応用について説明する。
最終的に、この急速に拡大する分野における研究動向についても論じる。
関連論文リスト
- Deep Learning for 3D Point Cloud Enhancement: A Survey [7.482216242644069]
本稿では,深層学習に基づくポイントクラウド強化手法に関する総合的な調査を行う。
ポイントクラウドの強化、すなわちクリーンなデータを達成するためのデノイング、見えないデータを復元するための完了、高密度なデータを得るためのアップサンプリングの3つの主要な視点をカバーしている。
本調査では,最近の最先端手法の新しい分類法と,標準ベンチマークの体系的実験結果について述べる。
論文 参考訳(メタデータ) (2024-10-30T15:07:06Z) - Zero-shot Point Cloud Completion Via 2D Priors [52.72867922938023]
3次元点雲の完成は、部分的に観測された点雲から完全な形状を復元するように設計されている。
そこで本研究では, 観測された点群を対象とするゼロショットフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T08:02:17Z) - Deep Learning-based 3D Point Cloud Classification: A Systematic Survey
and Outlook [12.014972829130764]
本稿では,ポイントクラウドの獲得,特徴,課題を紹介する。
我々は3Dデータ表現、ストレージフォーマット、およびポイントクラウド分類のための一般的に使用されるデータセットについてレビューする。
論文 参考訳(メタデータ) (2023-11-05T09:28:43Z) - Advancements in Point Cloud Data Augmentation for Deep Learning: A Survey [1.5954224931801726]
ディープラーニング(DL)は、ポイントクラウド分析タスクの主流で効果的な方法の1つになっています。
ポイントクラウドデータ拡張方法は、さまざまなポイントクラウド処理タスクで広く利用されている。
本稿では、これらの手法を調査し、基本的および専門的なポイントクラウドデータ拡張手法を含む分類フレームワークに分類する。
論文 参考訳(メタデータ) (2023-08-23T13:06:59Z) - Explore In-Context Learning for 3D Point Cloud Understanding [71.20912026561484]
我々は,特に3Dポイントクラウドにおけるコンテキスト内学習のために設計された,ポイント・イン・コンテキストという新しいフレームワークを紹介した。
一般点サンプリング演算子とタンデムで協調して動作するように慎重に設計したJoint Smplingモジュールを提案する。
提案手法の汎用性と適応性を検証するため,幅広いタスクを扱うための広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-06-14T17:53:21Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
本稿では,点雲のラベル効率学習に関する包括的調査を行う。
本稿では,ラベルの種類によって提供されるデータ前提条件に基づいて,ラベル効率のよい学習手法を整理する分類法を提案する。
それぞれのアプローチについて、問題設定の概要と、関連する進展と課題を示す広範な文献レビューを提供する。
論文 参考訳(メタデータ) (2023-05-31T12:54:51Z) - Self-supervised Learning for Pre-Training 3D Point Clouds: A Survey [25.51613543480276]
近年,自己管理型ポイントクラウド表現学習が注目されている。
本稿では,DNNを用いた自己教師型ポイントクラウド表現学習に関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-08T13:20:55Z) - Sequential Point Clouds: A Survey [33.20866441256135]
本稿では,シーケンシャルポイントクラウド研究のための深層学習に基づく手法について概説する。
これには、動的フロー推定、オブジェクトの検出とトラッキング、ポイントクラウドセグメンテーション、ポイントクラウド予測が含まれる。
論文 参考訳(メタデータ) (2022-04-20T09:14:20Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
エッジ生成(VE-PCN)を利用した点雲補完のためのボクセルネットワークを開発した。
まず点雲を正規のボクセル格子に埋め込み、幻覚した形状のエッジの助けを借りて完全な物体を生成する。
この分離されたアーキテクチャとマルチスケールのグリッド機能学習は、より現実的な表面上の詳細を生成することができる。
論文 参考訳(メタデータ) (2021-08-23T05:10:29Z) - Deep Learning for 3D Point Clouds: A Survey [58.954684611055]
本稿では,ポイントクラウドにおけるディープラーニング手法の最近の進歩を概観する。
3D形状分類、3Dオブジェクトの検出と追跡、3Dポイントクラウドセグメンテーションを含む3つの主要なタスクをカバーしている。
また、いくつかの公開データセットで比較結果を提示する。
論文 参考訳(メタデータ) (2019-12-27T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。