論文の概要: Learning Sensorimotor Primitives of Sequential Manipulation Tasks from
Visual Demonstrations
- arxiv url: http://arxiv.org/abs/2203.03797v1
- Date: Tue, 8 Mar 2022 01:36:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 02:29:26.530982
- Title: Learning Sensorimotor Primitives of Sequential Manipulation Tasks from
Visual Demonstrations
- Title(参考訳): 視覚実演による逐次操作タスクの学習感覚運動プリミティブ
- Authors: Junchi Liang, Bowen Wen, Kostas Bekris and Abdeslam Boularias
- Abstract要約: 本稿では,低レベルポリシーと高レベルポリシーを同時に学習するニューラルネットワークベースの新しいフレームワークについて述べる。
提案手法の重要な特徴は、これらのポリシーがタスクデモの生のビデオから直接学習されることである。
ロボットアームを用いた物体操作タスクの実証実験の結果,提案するネットワークは実際の視覚的な実演から効率よく学習し,タスクを実行することができることがわかった。
- 参考スコア(独自算出の注目度): 13.864448233719598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work aims to learn how to perform complex robot manipulation tasks that
are composed of several, consecutively executed low-level sub-tasks, given as
input a few visual demonstrations of the tasks performed by a person. The
sub-tasks consist of moving the robot's end-effector until it reaches a
sub-goal region in the task space, performing an action, and triggering the
next sub-task when a pre-condition is met. Most prior work in this domain has
been concerned with learning only low-level tasks, such as hitting a ball or
reaching an object and grasping it. This paper describes a new neural
network-based framework for learning simultaneously low-level policies as well
as high-level policies, such as deciding which object to pick next or where to
place it relative to other objects in the scene. A key feature of the proposed
approach is that the policies are learned directly from raw videos of task
demonstrations, without any manual annotation or post-processing of the data.
Empirical results on object manipulation tasks with a robotic arm show that the
proposed network can efficiently learn from real visual demonstrations to
perform the tasks, and outperforms popular imitation learning algorithms.
- Abstract(参考訳): 本研究の目的は,複数の低レベルサブタスクを連続的に実行し,そのタスクの視覚的な実演を入力として,複雑なロボット操作タスクを実行する方法を学ぶことである。
サブタスクは、ロボットのエンドエフェクタをタスク空間のサブゴール領域に到達するまで移動させ、アクションを実行し、前提条件が満たされると次のサブタスクをトリガーする。
この領域のほとんどの先行作業は、ボールを打つ、オブジェクトに到達し、それをつかむといった、低レベルのタスクのみを学ぶことに関心があった。
本稿では,次にどのオブジェクトを選択するか,あるいはシーン内の他のオブジェクトに対してどこに配置するかを決定するような,低レベルのポリシと高レベルのポリシを同時に学習するニューラルネットワークベースの新しいフレームワークについて述べる。
提案手法の主な特徴は,手動のアノテーションや後処理を使わずに,タスクデモの生のビデオから直接ポリシーを学習することである。
ロボットアームを用いた物体操作タスクの実証実験の結果,提案ネットワークは実際の視覚的デモンストレーションから効率よく学習し,一般的な模倣学習アルゴリズムより優れていた。
関連論文リスト
- Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Look-Ahead Selective Plasticity for Continual Learning of Visual Tasks [9.82510084910641]
タスク境界において,タスクが終了し,他のタスク開始時に発生する新しいメカニズムを提案する。
CIFAR10やTinyImagenetなどのコンピュータビジョンデータセットのベンチマークで提案手法を評価する。
論文 参考訳(メタデータ) (2023-11-02T22:00:23Z) - Few-Shot In-Context Imitation Learning via Implicit Graph Alignment [15.215659641228655]
オブジェクトのグラフ表現間の条件付きアライメント問題として模倣学習を定式化する。
この条件付けにより、ロボットがデモ直後に新しいオブジェクトのセット上でタスクを実行できる、コンテキスト内学習が可能となることを示す。
論文 参考訳(メタデータ) (2023-10-18T18:26:01Z) - Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
新しいタスクを継続的に学習するための自己教師型タスク推論手法を提案する。
我々は、行動マッチング型自己教師型学習目標を用いて、新しいタスク推論ネットワーク(TINet)を訓練する。
マルチタスクポリシはTINet上に構築され、タスクよりもパフォーマンスを最適化するために強化学習でトレーニングされている。
論文 参考訳(メタデータ) (2023-09-10T09:32:35Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation [8.939008609565368]
本稿では,下流政策学習におけるDense Cor correspondence pretext Taskによる画像キーポイントの学習の有効性を示す。
我々は,多様なロボット操作タスクに対するアプローチを評価し,他の視覚表現学習手法と比較し,その柔軟性と有効性を示した。
論文 参考訳(メタデータ) (2022-05-17T13:15:07Z) - Visuomotor Control in Multi-Object Scenes Using Object-Aware
Representations [25.33452947179541]
ロボット作業におけるオブジェクト指向表現学習の有効性を示す。
本モデルは,サンプル効率のよい制御ポリシーを学習し,最先端のオブジェクト技術より優れている。
論文 参考訳(メタデータ) (2022-05-12T19:48:11Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
6-DoF操作設定に合わせたデータ収集システムを構築します。
システムによって収集された新しいデータに基づいて,ポリシーを反復的にトレーニングするアルゴリズムを開発した。
介入型システムで収集したデータに基づいて訓練されたエージェントと、非介入型デモ参加者が収集した同等数のサンプルで訓練されたアルゴリズムを上回るエージェントを実証する。
論文 参考訳(メタデータ) (2020-12-12T05:30:35Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z) - Modeling Long-horizon Tasks as Sequential Interaction Landscapes [75.5824586200507]
本稿では,一連のデモビデオからのみ,サブタスク間の依存関係と遷移を学習するディープラーニングネットワークを提案する。
これらのシンボルは、画像観察から直接学習し、予測できることが示される。
我々は,(1)人間によって実行されるパズル片のブロック積み重ね,(2)物体のピック・アンド・プレイスとキャビネットドアを7-DoFロボットアームで滑らせるロボット操作という,2つの長期水平作業において,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2020-06-08T18:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。