Manipulating synthetic gauge fluxes via multicolor dressing of
Rydberg-atom arrays
- URL: http://arxiv.org/abs/2203.03994v2
- Date: Mon, 3 Oct 2022 11:43:48 GMT
- Title: Manipulating synthetic gauge fluxes via multicolor dressing of
Rydberg-atom arrays
- Authors: Xiaoling Wu, Fan Yang, Shuo Yang, Klaus M{\o}lmer, Thomas Pohl, Meng
Khoon Tey, Li You
- Abstract summary: We show that optical Rydberg dressing with multicolor laser fields opens up distinct interaction channels.
A remarkable consequence of the interaction is the emergence of topologically protected long-range doublons.
- Score: 12.153962518450202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arrays of highly excited Rydberg atoms can be used as powerful quantum
simulation platforms. Here, we introduce an approach that makes it possible to
implement fully controllable effective spin interactions in such systems. We
show that optical Rydberg dressing with multicolor laser fields opens up
distinct interaction channels that enable complete site-selective control of
the induced interactions and favorable scaling with respect to decoherence. We
apply this method to generate synthetic gauge fields for Rydberg excitations
where the effective magnetic flux can be manipulated at the single-plaquette
level by simply varying the phase of the local dressing field. The system can
be mapped to a highly anisotropic Heisenberg model, and the resulting spin
interaction opens the door for explorations of topological phenomena with
nonlocal density interactions. A remarkable consequence of the interaction is
the emergence of topologically protected long-range doublons, which exhibit
strongly correlated motion in a chiral and robust manner.
Related papers
- Phonon-assisted coherent transport of excitations in Rydberg-dressed
atom arrays [0.0]
Polarons arise from the self-trapping interaction between electrons and lattice distortions in a solid.
We present a microscopic model that exhibits a diverse range of dynamic behavior, arising from the intricate interplay between excitation-phonon coupling terms.
This work contributes to the understanding of polaron dynamics with their potential applications in coherent quantum transport.
arXiv Detail & Related papers (2023-07-10T10:40:47Z) - Strongly interacting Rydberg atoms in synthetic dimensions with a
magnetic flux [6.217331848132275]
We explore strongly interacting systems of Rydberg atoms prepared in optical tweezer arrays.
We find highly coherent dynamics, in good agreement with theory.
These demonstrations pave the way for future explorations of strongly interacting dynamics and many-body phases in Rydberg synthetic lattices.
arXiv Detail & Related papers (2023-06-01T16:43:04Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum Hall states for Rydberg atoms with laser-assisted dipole-dipole
interactions [1.9662978733004601]
We propose a novel scheme with laser-assisted dipole-dipole interactions to realize synthetic magnetic field for Rydberg atoms in a two-dimensional array configuration.
This work opens an avenue for the realization of the highly-sought-after bosonic topological orders using Rydberg atoms.
arXiv Detail & Related papers (2022-04-14T16:28:07Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.