Variational methods for simulation-based inference
- URL: http://arxiv.org/abs/2203.04176v1
- Date: Tue, 8 Mar 2022 16:06:37 GMT
- Title: Variational methods for simulation-based inference
- Authors: Manuel Gl\"ockler, Michael Deistler, Jakob H. Macke
- Abstract summary: Sequential Neural Variational Inference (SNVI) is an approach to perform Bayesian inference in models with intractable likelihoods.
SNVI combines likelihood-estimation with variational inference to achieve a scalable simulation-based inference approach.
- Score: 3.308743964406687
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present Sequential Neural Variational Inference (SNVI), an approach to
perform Bayesian inference in models with intractable likelihoods. SNVI
combines likelihood-estimation (or likelihood-ratio-estimation) with
variational inference to achieve a scalable simulation-based inference
approach. SNVI maintains the flexibility of likelihood(-ratio) estimation to
allow arbitrary proposals for simulations, while simultaneously providing a
functional estimate of the posterior distribution without requiring MCMC
sampling. We present several variants of SNVI and demonstrate that they are
substantially more computationally efficient than previous algorithms, without
loss of accuracy on benchmark tasks. We apply SNVI to a neuroscience model of
the pyloric network in the crab and demonstrate that it can infer the posterior
distribution with one order of magnitude fewer simulations than previously
reported. SNVI vastly reduces the computational cost of simulation-based
inference while maintaining accuracy and flexibility, making it possible to
tackle problems that were previously inaccessible.
Related papers
- Preconditioned Neural Posterior Estimation for Likelihood-free Inference [5.651060979874024]
We show in this paper that the neural posterior estimator (NPE) methods are not guaranteed to be highly accurate, even on problems with low dimension.
We propose preconditioned NPE and its sequential version (PSNPE), which uses a short run of ABC to effectively eliminate regions of parameter space that produce large discrepancy between simulations and data.
We present comprehensive empirical evidence that this melding of neural and statistical SBI methods improves performance over a range of examples.
arXiv Detail & Related papers (2024-04-21T07:05:38Z) - A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - All-in-one simulation-based inference [19.41881319338419]
We present a new amortized inference method -- the Simformer -- which overcomes current limitations.
The Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks.
It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data.
arXiv Detail & Related papers (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
Surjective Sequential Neural Likelihood estimation is a novel method for simulation-based inference.
By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets.
arXiv Detail & Related papers (2023-08-02T10:02:38Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
Likelihood-free inference for simulator-based statistical models has attracted a surge of interest, both in the machine learning and statistics communities.
Here we derive a set of theoretical results to enable estimation, hypothesis testing and construction of confidence intervals for model parameters using computation properties of the Jensen-Shannon- divergence.
Such approximation offers a rapid alternative to more-intensive approaches and can be attractive for diverse applications of simulator-based models.
arXiv Detail & Related papers (2022-05-22T18:00:13Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.