論文の概要: Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2203.04421v1
- Date: Tue, 8 Mar 2022 21:54:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 17:04:44.102004
- Title: Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction
- Title(参考訳): マルチエージェント軌道予測のためのスムースアテンションの活用
- Authors: Zhangjie Cao, Erdem B{\i}y{\i}k, Guy Rosman, Dorsa Sadigh
- Abstract要約: 我々は,時間的全変動に基づくマルチエージェントインタラクションの注意モデルを構築した。
我々は,その利点を,合成運転データと自然運転データの両方に対する最先端のアプローチと比較することにより,予測精度の面で示す。
- 参考スコア(独自算出の注目度): 32.970169015894705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent interactions are important to model for forecasting other agents'
behaviors and trajectories. At a certain time, to forecast a reasonable future
trajectory, each agent needs to pay attention to the interactions with only a
small group of most relevant agents instead of unnecessarily paying attention
to all the other agents. However, existing attention modeling works ignore that
human attention in driving does not change rapidly, and may introduce
fluctuating attention across time steps. In this paper, we formulate an
attention model for multi-agent interactions based on a total variation
temporal smoothness prior and propose a trajectory prediction architecture that
leverages the knowledge of these attended interactions. We demonstrate how the
total variation attention prior along with the new sequence prediction loss
terms leads to smoother attention and more sample-efficient learning of
multi-agent trajectory prediction, and show its advantages in terms of
prediction accuracy by comparing it with the state-of-the-art approaches on
both synthetic and naturalistic driving data. We demonstrate the performance of
our algorithm for trajectory prediction on the INTERACTION dataset on our
website.
- Abstract(参考訳): マルチエージェント相互作用は、他のエージェントの振る舞いや軌道を予測する上で重要なモデルである。
ある時点で、合理的な将来の軌道を予測するために、各エージェントは他のエージェントすべてに不必要に注意を払うのではなく、最も関係のあるエージェントの小さなグループのみとの相互作用に注意を払う必要がある。
しかし、既存の注意モデリングでは、運転中の人間の注意は急速に変化せず、時間の経過とともに注意が変動する可能性があることを無視している。
本稿では,前述した全変動時間的滑らか度に基づくマルチエージェントインタラクションの注意モデルを作成し,これらの相互作用の知識を活用する軌道予測アーキテクチャを提案する。
本稿では,新しいシーケンス予測損失項に先行する全変動注意が,よりスムーズな注意と多エージェント軌道予測のサンプル効率の学習につながることを示し,その利点を,合成運転データと自然運転データの両方に対する最先端のアプローチと比較することにより予測精度の面で示す。
我々は,Webサイト上でのInterActionデータセット上で,軌道予測のためのアルゴリズムの性能を示す。
関連論文リスト
- Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction [1.6954753390775528]
本稿では,インタラクションエージェントを手動で選択し,アテンションスコアの代わりに相関関係を計算するASPILinを提案する。
興味深いことに、InterACTION、HighD、CitySimデータセットで実施された実験は、我々の手法が効率的かつ簡単であることを実証している。
論文 参考訳(メタデータ) (2024-05-21T18:45:18Z) - Multi-agent Traffic Prediction via Denoised Endpoint Distribution [23.767783008524678]
高速での軌道予測には歴史的特徴と周囲の物体との相互作用が必要である。
軌道予測のためのDenoized Distributionモデルを提案する。
我々のアプローチは、エンドポイント情報によるモデルの複雑さとパフォーマンスを著しく削減します。
論文 参考訳(メタデータ) (2024-05-11T15:41:32Z) - Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
ニューラル・インタラクション・エナジー(MATE)によるマルチエージェント軌道予測(Multi-Agent Trajectory Prediction)というフレームワークを導入する。
MATEは神経相互作用エネルギーを用いてエージェントの対話運動を評価する。
時間的安定性を高めるために,エージェント間相互作用制約とエージェント内動作制約という2つの制約を導入する。
論文 参考訳(メタデータ) (2024-04-25T12:47:47Z) - SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction [4.286256266868156]
トラジェクティブ予測のためのインタラクションモデリングを強化するために,プリテキストタスクを提案するSSL-Interactionsを提案する。
エージェントインタラクションの様々な側面をカプセル化する4つの対話対応プレテキストタスクを導入する。
また,データセットからインタラクション重大シナリオをキュレートする手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:43:40Z) - M2I: From Factored Marginal Trajectory Prediction to Interactive
Prediction [26.49897317427192]
既存のモデルは単一エージェントの限界軌道の予測に優れているが、複数のエージェントに対してシーン準拠の軌道の予測を共同で行うことは、未解決の問題である。
本研究では,対話エージェント間の基礎となる関係を利用して,共同予測問題を限界予測問題に分解する。
提案手法はまず, 干渉剤を1対のインフルエンサーとリアクトルとに分類し, それぞれのインフルエンサーとリアクトルの軌跡を予測するために, 境界予測モデルと条件予測モデルを利用する。
論文 参考訳(メタデータ) (2022-02-24T03:28:26Z) - Dyadic Human Motion Prediction [119.3376964777803]
本稿では,2つの被験者の相互作用を明示的に推論する動き予測フレームワークを提案する。
具体的には,2つの被験者の運動履歴の相互依存をモデル化する一対の注意機構を導入する。
これにより、より現実的な方法で長期の運動力学を保ち、異常かつ高速な運動を予測することができる。
論文 参考訳(メタデータ) (2021-12-01T10:30:40Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - RAIN: Reinforced Hybrid Attention Inference Network for Motion
Forecasting [34.54878390622877]
本稿では,ハイブリットアテンション機構に基づく動的キー情報の選択とランク付けを行う汎用的な動き予測フレームワークを提案する。
このフレームワークは、マルチエージェント軌道予測と人間の動き予測タスクを処理するためにインスタンス化される。
我々は,異なる領域における合成シミュレーションと運動予測ベンチマークの両方について,その枠組みを検証した。
論文 参考訳(メタデータ) (2021-08-03T06:30:30Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
マルチプライカテゴリにおける異種エージェントの軌跡を予測できる,シンプルで効果的な非境界相互作用ネットワーク (UNIN) を提案する。
具体的には、提案した無制限近傍相互作用モジュールは、相互作用に関与するすべてのエージェントの融合特徴を同時に生成する。
階層型グラフアテンションモジュールを提案し,カテゴリ間相互作用とエージェント間相互作用を求める。
論文 参考訳(メタデータ) (2021-07-31T13:36:04Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。