論文の概要: Active Self-Semi-Supervised Learning for Few Labeled Samples Fast
Training
- arxiv url: http://arxiv.org/abs/2203.04560v1
- Date: Wed, 9 Mar 2022 07:45:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 15:14:11.018257
- Title: Active Self-Semi-Supervised Learning for Few Labeled Samples Fast
Training
- Title(参考訳): ラベル付きサンプルの高速学習のためのアクティブセルフセミビジョン学習
- Authors: Ziting Wen, Oscar Pizarro, Stefan Williams
- Abstract要約: 半教師付き学習は、ほとんどアノテーションなしでのトレーニングで大きな成功を収めた。
ランダムサンプリングによって生成された低品質なラベル付きサンプルは、アノテーションの数を減らし続けるのが困難である。
擬似ラベルが優れた半教師付きモデルをブートストラップする,アクティブな自己半教師付きトレーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.4806267677524896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Faster training and fewer annotations are two key issues for applying deep
models to various practical domains. Now, semi-supervised learning has achieved
great success in training with few annotations. However, low-quality labeled
samples produced by random sampling make it difficult to continue to reduce the
number of annotations. In this paper we propose an active self-semi-supervised
training framework that bootstraps semi-supervised models with good prior
pseudo-labels, where the priors are obtained by label propagation over
self-supervised features. Because the accuracy of the prior is not only
affected by the quality of features, but also by the selection of the labeled
samples. We develop active learning and label propagation strategies to obtain
better prior pseudo-labels. Consequently, our framework can greatly improve the
performance of models with few annotations and greatly reduce the training
time. Experiments on three semi-supervised learning benchmarks demonstrate
effectiveness. Our method achieves similar accuracy to standard semi-supervised
approaches in about 1/3 of the training time, and even outperform them when
fewer annotations are available (84.10\% in CIFAR-10 with 10 labels).
- Abstract(参考訳): トレーニングの高速化とアノテーションの削減は、さまざまな実践領域に深層モデルを適用する上で重要な2つの問題である。
現在、半教師付き学習は、少ないアノテーションでトレーニングで大きな成功を収めている。
しかしながら、ランダムサンプリングによって生成される低品質のラベル付きサンプルは、アノテーションの数を減らすのが難しくなる。
本稿では,自己教師付き特徴のラベル伝搬により先行する先行擬似ラベルを用いた半教師付きモデルのブートストラップを行うアクティブな自己教師付き学習フレームワークを提案する。
なぜなら、事前の精度は特徴の質だけでなく、ラベル付きサンプルの選択によっても影響を受けるからである。
我々は,より優れた擬似ラベルを得るために,能動的学習とラベル伝搬戦略を開発した。
その結果,アノテーションをほとんど使わずにモデルの性能を大幅に向上し,トレーニング時間を大幅に短縮できる。
3つの半教師付き学習ベンチマークの実験は効果を示す。
本手法は,訓練時間の約1/3で標準半教師付きアプローチと同様の精度を実現し,アノテーションの少ない場合(cifar-10では84.10\%,ラベル10。
関連論文リスト
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - Robust Positive-Unlabeled Learning via Noise Negative Sample
Self-correction [48.929877651182885]
正および未ラベルのデータから学ぶことは、文学における正の未ラベル(PU)学習として知られている。
本研究では,人間の学習の性質を動機とした学習戦略を取り入れた,新しい堅牢なPU学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-01T04:34:52Z) - Active Self-Training for Weakly Supervised 3D Scene Semantic
Segmentation [17.27850877649498]
本稿では,自己学習と能動的学習を組み合わせた3次元シーンの弱教師付きセグメンテーション手法を提案する。
提案手法は,従来の作業やベースラインよりもシーンセグメンテーションを改善する効果的な手法であることを示す。
論文 参考訳(メタデータ) (2022-09-15T06:00:25Z) - Reducing Label Effort: Self-Supervised meets Active Learning [32.4747118398236]
自己学習の最近の進歩は、いくつかのデータセットで教師付き学習に匹敵する非常に印象的な成果を上げている。
実験の結果, 自己学習は, ラベル付け作業の削減において, 積極的学習よりも極めて効率的であることが判明した。
自己学習またはスクラッチでトレーニングされたアクティブラーニングのパフォーマンスギャップは、データセットのほぼ半分がラベル付けされた時点に近づくにつれて減少します。
論文 参考訳(メタデータ) (2021-08-25T20:04:44Z) - Are Fewer Labels Possible for Few-shot Learning? [81.89996465197392]
ごく限られたデータとラベルのため、わずかなショット学習は難しい。
近年のBiT (Big Transfer) 研究は、異なる領域における大規模ラベル付きデータセットの事前トレーニングによって、少数ショット学習が大きな恩恵を受けることを示した。
本稿では,ファインチューニングにおけるクラスタリングと固有サンプルの共進化を活かし,ショット学習の削減を図る。
論文 参考訳(メタデータ) (2020-12-10T18:59:29Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
本研究は,アノテーションのボトルネックを軽減するための半教師あり学習手法の1つとして,自己学習について研究する。
本稿では,基礎となるニューラルネットワークの不確実性推定を取り入れて,自己学習を改善する手法を提案する。
本手法では,クラス毎に20~30個のラベル付きサンプルをトレーニングに利用し,完全教師付き事前学習言語モデルの3%以内で検証を行う。
論文 参考訳(メタデータ) (2020-06-27T08:13:58Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。