論文の概要: Multi-modal Brain Tumor Segmentation via Missing Modality Synthesis and
Modality-level Attention Fusion
- arxiv url: http://arxiv.org/abs/2203.04586v1
- Date: Wed, 9 Mar 2022 09:08:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-11 03:35:55.319235
- Title: Multi-modal Brain Tumor Segmentation via Missing Modality Synthesis and
Modality-level Attention Fusion
- Title(参考訳): 欠損モダリティ合成とモダリティレベルアテンション融合による脳腫瘍のマルチモーダルセグメンテーション
- Authors: Ziqi Huang, Li Lin, Pujin Cheng, Linkai Peng, Xiaoying Tang
- Abstract要約: 我々は、Modality-Level Attention Fusion Network (MAF-Net) というエンドツーエンドフレームワークを提案する。
提案するMAF-Netはより優れたT1ce合成性能と正確な脳腫瘍セグメンテーションをもたらす。
- 参考スコア(独自算出の注目度): 3.9562534927482704
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Multi-modal magnetic resonance (MR) imaging provides great potential for
diagnosing and analyzing brain gliomas. In clinical scenarios, common MR
sequences such as T1, T2 and FLAIR can be obtained simultaneously in a single
scanning process. However, acquiring contrast enhanced modalities such as T1ce
requires additional time, cost, and injection of contrast agent. As such, it is
clinically meaningful to develop a method to synthesize unavailable modalities
which can also be used as additional inputs to downstream tasks (e.g., brain
tumor segmentation) for performance enhancing. In this work, we propose an
end-to-end framework named Modality-Level Attention Fusion Network (MAF-Net),
wherein we innovatively conduct patchwise contrastive learning for extracting
multi-modal latent features and dynamically assigning attention weights to fuse
different modalities. Through extensive experiments on BraTS2020, our proposed
MAF-Net is found to yield superior T1ce synthesis performance (SSIM of 0.8879
and PSNR of 22.78) and accurate brain tumor segmentation (mean Dice scores of
67.9%, 41.8% and 88.0% on segmenting the tumor core, enhancing tumor and whole
tumor).
- Abstract(参考訳): マルチモーダル磁気共鳴(mr)イメージングは、脳グリオーマの診断と解析に大きな可能性がある。
臨床シナリオでは、単一のスキャンプロセスでT1、T2、FLAIRなどの一般的なMR配列を同時に得ることができる。
しかし、t1ceのようなコントラスト拡張モダリティを取得するには、追加時間、コスト、コントラストエージェントの注入が必要である。
そのため、パフォーマンス向上のために下流タスク(例えば脳腫瘍のセグメンテーション)への追加入力としても使用できる不利用可能なモダリティを合成する方法を開発することは臨床的に有意義である。
本研究では,マルチモーダルな潜在特徴を抽出し,注意重みを動的に割り当てて異なるモダリティを融合させる,MAF-Net(Modality-Level Attention Fusion Network)というエンドツーエンドフレームワークを提案する。
BraTS2020における広範囲な実験により,提案したMAF-Netはより優れたT1ce合成性能(SSIM0.8879,PSNR22.78)と正確な脳腫瘍セグメンテーション(Diceスコア67.9%,41.8%,88.0%)が得られることがわかった。
関連論文リスト
- Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
本研究では,ONet と UNet の修正版を用いた新しいアンサンブル手法を提案する。
データ拡張により、さまざまなスキャンプロトコル間の堅牢性と精度が保証される。
以上の結果から,この高度なアンサンブルアプローチは診断精度の向上に期待できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-14T15:29:32Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
磁気共鳴画像(MRI)における脳腫瘍の検出・分類のための2段階深層学習フレームワークの提案
第1フェーズでは、健康な人から腫瘍MRI画像を検出するために、新しい深層化特徴とアンサンブル分類器(DBF-EC)方式が提案されている。
第2段階では, 異なる腫瘍タイプを分類するために, 動的静的特徴とML分類器からなる融合型脳腫瘍分類法が提案されている。
論文 参考訳(メタデータ) (2022-01-14T10:24:47Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Feature-enhanced Generation and Multi-modality Fusion based Deep Neural
Network for Brain Tumor Segmentation with Missing MR Modalities [2.867517731896504]
主な問題は、すべてのMRIが常に臨床検査で利用できるわけではないことである。
今回我々は1つ以上のモダリティが欠落した場合に新しい脳腫瘍分節ネットワークを提案する。
提案ネットワークは,機能強化ジェネレータ,相関制約ブロック,セグメンテーションネットワークの3つのサブネットワークで構成されている。
論文 参考訳(メタデータ) (2021-11-08T10:59:40Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - Soft Tissue Sarcoma Co-Segmentation in Combined MRI and PET/CT Data [2.2515303891664358]
マルチモーダル医用画像における腫瘍のセグメンテーションは, 深層学習の手法に傾きつつある。
本稿では,モダリティ固有のエンコーダとデコーダのブランチによるマルチモーダル特徴学習を実現する,同時分離手法を提案する。
MRI(T1およびT2配列)とPET/CTスキャンを併用した公衆軟部肉腫データに対するアプローチの有効性を示した。
論文 参考訳(メタデータ) (2020-08-28T09:15:42Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
信頼性ガイドSAMR(CG-SAMR)は、病変情報からマルチモーダル解剖学的配列にデータを合成する。
モジュールは中間結果に対する信頼度測定に基づいて合成をガイドする。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-06T20:20:22Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Multi-Modality Generative Adversarial Networks with Tumor Consistency
Loss for Brain MR Image Synthesis [30.64847799586407]
1つのMRモードT2から3つの高品質MRモード(FLAIR, T1, T1ce)を同時に合成する多モード生成対向ネットワーク(MGAN)を提案する。
実験結果から, 合成画像の品質は, ベースラインモデル, pix2pixで合成した画像より優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-02T21:33:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。