論文の概要: FragmGAN: Generative Adversarial Nets for Fragmentary Data Imputation
and Prediction
- arxiv url: http://arxiv.org/abs/2203.04692v1
- Date: Wed, 9 Mar 2022 13:08:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-11 00:05:45.447226
- Title: FragmGAN: Generative Adversarial Nets for Fragmentary Data Imputation
and Prediction
- Title(参考訳): fragmgan: 断片的データインプテーションと予測のための生成的逆ネット
- Authors: Fang Fang, Shenliao Bao
- Abstract要約: 本稿では,GAN(Generative Adversarial Nets)に基づく統合フレームワークを提案する。
FragmGANは、データミス・アット・ランダム(MAR)による計算を理論的に保証するが、ヒント機構は必要ない。
この結合機構は、広範な実験において予測性能に重要な利点を示す。
- 参考スコア(独自算出の注目度): 3.883170502945389
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modern scientific research and applications very often encounter "fragmentary
data" which brings big challenges to imputation and prediction. By leveraging
the structure of response patterns, we propose a unified and flexible framework
based on Generative Adversarial Nets (GAN) to deal with fragmentary data
imputation and label prediction at the same time. Unlike most of the other
generative model based imputation methods that either have no theoretical
guarantee or only consider Missing Completed At Random (MCAR), the proposed
FragmGAN has theoretical guarantees for imputation with data Missing At Random
(MAR) while no hint mechanism is needed. FragmGAN trains a predictor with the
generator and discriminator simultaneously. This linkage mechanism shows
significant advantages for predictive performances in extensive experiments.
- Abstract(参考訳): 現代の科学研究と応用は、しばしば「フラッグメントデータ」に遭遇し、インプテーションと予測に大きな課題をもたらす。
応答パターンの構造を活用することにより,GAN(Generative Adversarial Nets)に基づく,断片的なデータ計算とラベル予測を同時に扱う,統一的で柔軟なフレームワークを提案する。
FragmGANは、理論的な保証がないか、完全なランダム(MCAR)のみを考慮している他のほとんどの生成モデルベースの計算方法とは異なり、提案されたFragmGANはデータのランダム(MAR)による計算を理論的に保証するが、ヒントメカニズムは不要である。
FragmGANは、ジェネレータと識別器を同時にトレーニングする。
この結合機構は、広範な実験において予測性能に大きな利点を示す。
関連論文リスト
- Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Characterization and Greedy Learning of Gaussian Structural Causal
Models under Unknown Interventions [3.441021278275805]
本研究は,各実験における介入対象が不明な場合の観察に基づく因果構造回復の問題について考察する。
干渉対象の知識のないデータ生成モデルの同値クラスを復元するために,GnIESと呼ばれるグリーディアルゴリズムを導出する。
我々は,この手法を活用し,合成,実,半合成のデータセット上でのGnIESの性能を評価する。
論文 参考訳(メタデータ) (2022-11-27T17:37:21Z) - Compound Density Networks for Risk Prediction using Electronic Health
Records [1.1786249372283562]
複合密度ネットワーク(CDNet)を用いたエンドツーエンド統合手法を提案する。
CDNetは、単一のフレームワーク内で計算方法と予測モデルを調整できるようにする。
我々は,MIMIC-IIIデータセット上での死亡予測タスクにおいてCDNetを検証した。
論文 参考訳(メタデータ) (2022-08-02T09:04:20Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
本稿では,適応アンサンブルバッチ多出力多出力共形量子化回帰(AEnbMIMOCQR)と呼ばれる新しいモデル非依存アルゴリズムを提案する。
これにより、予測者は、固定された特定された誤発見率に対して、分布のない方法で、複数段階の事前予測間隔を生成できる。
本手法は, 整合予測の原理に基づいているが, データの分割は不要であり, データの交換ができない場合でも, ほぼ正確なカバレッジを提供する。
論文 参考訳(メタデータ) (2022-07-28T16:40:26Z) - Multiple Imputation via Generative Adversarial Network for
High-dimensional Blockwise Missing Value Problems [6.123324869194195]
本稿では,GAN(Generative Adversarial Network)による多重インプットを提案する。
MI-GANは、高次元データセット上で既存の最先端計算手法と高い性能を示す。
特に、MI-GANは統計的推測と計算速度の点で他の計算方法よりも優れている。
論文 参考訳(メタデータ) (2021-12-21T20:19:37Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z) - Estimation with Uncertainty via Conditional Generative Adversarial
Networks [3.829070379776576]
条件付き生成逆数ネットワーク(cGAN)におけるジェネレータの使い方が異なる予測確率型ニューラルネットワークモデルを提案する。
通常のcGANの入力と出力を反転させることで、モデルを予測モデルとしてうまく利用することができる。
さらに,予測の不確実性を測定するために,回帰問題や分類問題に対するエントロピーと相対エントロピーを導入する。
論文 参考訳(メタデータ) (2020-07-01T08:54:17Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。