Quantum Advantage for Multi-option Portfolio Pricing and Valuation Adjustments
- URL: http://arxiv.org/abs/2203.04924v2
- Date: Wed, 02 Apr 2025 03:59:33 GMT
- Title: Quantum Advantage for Multi-option Portfolio Pricing and Valuation Adjustments
- Authors: Jeong Yu Han, Bin Cheng, Dinh-Long Vu, Patrick Rebentrost,
- Abstract summary: We study the problem of Credit Valuation Adjustments (CVAs) which has significant importance in the valuation of derivative portfolios.<n>We propose quantum algorithms that accelerate statistical sampling processes to approximate the price of the multi-option portfolio and the CVA.
- Score: 1.0073912659004869
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A critical problem in the financial world deals with the management of risk, from regulatory risk to portfolio risk. Many such problems involve the analysis of securities modelled by complex dynamics that cannot be captured analytically, and hence rely on numerical techniques that simulate the stochastic nature of the underlying variables. These techniques may be computationally difficult or demanding. Hence, improving these methods offers a variety of opportunities for quantum algorithms. In this work, we study the problem of Credit Valuation Adjustments (CVAs) which has significant importance in the valuation of derivative portfolios. As a variant, we also consider the problem of pricing a portfolio of many different financial options. We propose quantum algorithms that accelerate statistical sampling processes to approximate the price of the multi-option portfolio and the CVA under different measures of dispersion. Technically, our algorithms are based on enhancing the quantum Monte Carlo (QMC) algorithms by Montanaro with an unbiased version of quantum amplitude estimation. We analyse the conditions under which we may employ these techniques and demonstrate the application of QMC techniques on CVA approximation when particular bounds for the variance of CVA are known.
Related papers
- Stochastic Q-learning for Large Discrete Action Spaces [79.1700188160944]
In complex environments with discrete action spaces, effective decision-making is critical in reinforcement learning (RL)
We present value-based RL approaches which, as opposed to optimizing over the entire set of $n$ actions, only consider a variable set of actions, possibly as small as $mathcalO(log(n)$)$.
The presented value-based RL methods include, among others, Q-learning, StochDQN, StochDDQN, all of which integrate this approach for both value-function updates and action selection.
arXiv Detail & Related papers (2024-05-16T17:58:44Z) - Quantum Risk Analysis of Financial Derivatives [0.3749861135832073]
We introduce two quantum algorithms to compute the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of financial derivatives using quantum computers.
arXiv Detail & Related papers (2024-04-15T18:52:30Z) - Comparative analysis of diverse methodologies for portfolio optimization leveraging quantum annealing techniques [3.296670045513668]
As the number of involved assets and constraints increases, the portfolio optimization problem can become increasingly difficult to solve.
Quantum annealing algorithm holds promise for solving complex portfolio optimization problems in the NISQ era.
arXiv Detail & Related papers (2024-03-05T02:21:54Z) - An Empirical Investigation of Value-Based Multi-objective Reinforcement
Learning for Stochastic Environments [1.26404863283601]
This paper examines the factors influencing the frequency with which value-based MORL Q-learning algorithms learn the SER-optimal policy.
We highlight the critical impact of the noisy Q-value estimates issue on the stability and convergence of these algorithms.
arXiv Detail & Related papers (2024-01-06T08:43:08Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Quantum Computational Algorithms for Derivative Pricing and Credit Risk
in a Regime Switching Economy [0.0]
We introduce a class of processes that are both realistic in terms of mimicking financial market risks as well as more amenable to potential quantum computational advantages.
We study algorithms to estimate credit risk and option pricing on a gate-based quantum computer.
arXiv Detail & Related papers (2023-11-01T20:15:59Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks [142.67349734180445]
Existing algorithms that provide risk-awareness to deep neural networks are complex and ad-hoc.
Here we present capsa, a framework for extending models with risk-awareness.
arXiv Detail & Related papers (2023-08-01T02:07:47Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Towards practical Quantum Credit Risk Analysis [0.5735035463793008]
CRA (Credit Risk Analysis) quantum algorithm with a quadratic speedup has been introduced.
We propose a new variant of this quantum algorithm with the intent of overcoming some of the most significant limitations.
arXiv Detail & Related papers (2022-12-14T09:25:30Z) - Comparing Classical-Quantum Portfolio Optimization with Enhanced
Constraints [0.0]
We show how to add fundamental analysis to the portfolio optimization problem, adding in asset-specific and global constraints based on chosen balance sheet metrics.
We analyze the current state-of-the-art algorithms for solving such a problem using D-Wave's Quantum Processor and compare the quality of the solutions obtained to commercially-available optimization software.
arXiv Detail & Related papers (2022-03-09T17:46:32Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.