論文の概要: AIFB-WebScience at SemEval-2022 Task 12: Relation Extraction First --
Using Relation Extraction to Identify Entities
- arxiv url: http://arxiv.org/abs/2203.05325v1
- Date: Thu, 10 Mar 2022 12:19:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-11 13:16:00.191404
- Title: AIFB-WebScience at SemEval-2022 Task 12: Relation Extraction First --
Using Relation Extraction to Identify Entities
- Title(参考訳): SemEval-2022 Task 12におけるAIFB-WebScience:関係抽出第一部-関係抽出と実体の同定
- Authors: Nicholas Popovic, Walter Laurito, Michael F\"arber
- Abstract要約: 本稿では,変換器に基づく言語モデルに基づくエンドツーエンドのジョイントエンティティと関係抽出手法を提案する。
実体抽出と関係抽出を連続的に行う既存手法とは対照的に,本システムは関係抽出からの情報を実体抽出に組み込む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present an end-to-end joint entity and relation extraction
approach based on transformer-based language models. We apply the model to the
task of linking mathematical symbols to their descriptions in LaTeX documents.
In contrast to existing approaches, which perform entity and relation
extraction in sequence, our system incorporates information from relation
extraction into entity extraction. This means that the system can be trained
even on data sets where only a subset of all valid entity spans is annotated.
We provide an extensive evaluation of the proposed system and its strengths and
weaknesses. Our approach, which can be scaled dynamically in computational
complexity at inference time, produces predictions with high precision and
reaches 3rd place in the leaderboard of SemEval-2022 Task 12. For inputs in the
domain of physics and math, it achieves high relation extraction macro f1
scores of 95.43% and 79.17%, respectively. The code used for training and
evaluating our models is available at: https://github.com/nicpopovic/RE1st
- Abstract(参考訳): 本稿では,変換器に基づく言語モデルに基づくエンドツーエンドのジョイントエンティティと関係抽出手法を提案する。
数学的記号をLaTeX文書に記述するタスクにモデルを適用する。
エンティティ抽出と関係抽出を連続的に行う既存のアプローチとは対照的に,本システムは関係抽出からエンティティ抽出へ情報を取り込む。
つまり、有効なエンティティのサブセットだけがアノテートされているデータセットでも、システムはトレーニングできる。
本稿では,提案システムとその長所と短所を広範囲に評価する。
提案手法は計算複雑性を推論時に動的に拡張し,高精度で予測し,SemEval-2022タスク12のリーダーボードで3位に到達した。
物理学と数学の分野の入力では、それぞれ95.43%と79.17%の高関係抽出マクロf1スコアが得られる。
モデルのトレーニングと評価に使用されるコードは、https://github.com/nicpopovic/RE1stで公開されている。
関連論文リスト
- FabricQA-Extractor: A Question Answering System to Extract Information from Documents using Natural Language Questions [4.961045761391367]
可読性モデルを読み取ると、短いテキストを渡せば自然言語で表される質問に答える。
本稿では,リレーショナル構造に関する知識を活用して抽出品質を向上させるリレーショナルコヒーレンス(Relation Coherence)というモデルを提案する。
リレーショナルコヒーレンスによって抽出性能が向上し,大規模データセット上でFabricQA-Extractorが評価されることを示す。
論文 参考訳(メタデータ) (2024-08-17T15:16:54Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Distantly Supervised Morpho-Syntactic Model for Relation Extraction [0.27195102129094995]
テキストから制約のない関係の集合を抽出し分類する手法を提案する。
ウィキデータとウィキペディア上に構築された6つのデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-01-18T14:17:40Z) - HIORE: Leveraging High-order Interactions for Unified Entity Relation
Extraction [85.80317530027212]
本稿では,統合エンティティ関係抽出のための新しい手法であるHIOREを提案する。
重要な洞察は、単語ペア間の複雑な関連を活用することである。
実験の結果,HIOREは従来最高の統一モデルよりも1.11.8 F1ポイント向上した。
論文 参考訳(メタデータ) (2023-05-07T14:57:42Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
学術論文からN-ary関係を抽出する問題について考察する。
提案手法であるReSelは,このタスクを2段階のプロシージャに分解する。
3つの科学的情報抽出データセットに対する実験により、ReSelは最先端のベースラインを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-10-26T02:28:02Z) - Interpretable and Low-Resource Entity Matching via Decoupling Feature
Learning from Decision Making [22.755892575582788]
Entity Matchingは、同じ現実世界のオブジェクトを表すエンティティレコードを認識することを目的としている。
異種情報融合(HIF)とキー属性ツリー(KAT)誘導からなる新しいEMフレームワークを提案する。
提案手法は効率が高く,ほとんどの場合SOTA EMモデルより優れている。
論文 参考訳(メタデータ) (2021-06-08T08:27:31Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
本稿では,周辺情報をグラフ誘導ガウス分布でエンコードし,その2種類の情報をグラフ駆動生成モデルと統合することを提案する。
この近似の下では、トレーニング対象がシングルトンまたはペアワイズ文書のみを含む用語に分解可能であることを証明し、モデルが非関連文書と同じくらい効率的にトレーニングできることを示す。
論文 参考訳(メタデータ) (2021-05-27T11:29:03Z) - Entity and Evidence Guided Relation Extraction for DocRED [33.69481141963074]
この課題に対して,共同トレーニングフレームワークE2GRE(Entity and Evidence Guided Relation extract)を提案する。
事前訓練された言語モデル(例えばBERT, RoBERTa)への入力としてエンティティ誘導シーケンスを導入する。
これらのエンティティ誘導シーケンスは、事前訓練された言語モデル(LM)がエンティティに関連するドキュメントの領域に集中するのに役立ちます。
我々は最近リリースされた関係抽出のための大規模データセットDocREDに対するE2GREアプローチを評価した。
論文 参考訳(メタデータ) (2020-08-27T17:41:23Z) - Extractive Summarization as Text Matching [123.09816729675838]
本稿では,ニューラル抽出要約システムの構築方法に関するパラダイムシフトを作成する。
抽出した要約タスクを意味テキストマッチング問題として定式化する。
我々はCNN/DailyMailの最先端抽出結果を新しいレベル(ROUGE-1の44.41)に推し進めた。
論文 参考訳(メタデータ) (2020-04-19T08:27:57Z) - Pre-training for Abstractive Document Summarization by Reinstating
Source Text [105.77348528847337]
本稿では,Seq2Seqに基づく非ラベルテキストによる抽象要約モデルの事前学習を可能にする3つの事前学習目標を提案する。
2つのベンチマーク要約データセットの実験では、3つの目的がすべてベースラインでパフォーマンスを向上させることが示されている。
論文 参考訳(メタデータ) (2020-04-04T05:06:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。