Deep Convolutional Neural Networks for Molecular Subtyping of Gliomas
Using Magnetic Resonance Imaging
- URL: http://arxiv.org/abs/2203.05571v1
- Date: Thu, 10 Mar 2022 14:46:20 GMT
- Title: Deep Convolutional Neural Networks for Molecular Subtyping of Gliomas
Using Magnetic Resonance Imaging
- Authors: Dong Wei, Yiming Li, Yinyan Wang, Tianyi Qian, and Yefeng Zheng
- Abstract summary: A DCNN model was developed for the prediction of the five glioma subtypes based on a hierarchical classification paradigm.
The predictive performance was evaluated via the area under the curve (AUC) from the receiver operating characteristic analysis.
The results showed that the developed DCNN model can predict glioma subtypes with promising performance, given sufficient, non-ill-balanced training data.
- Score: 24.418025043887678
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Knowledge of molecular subtypes of gliomas can provide valuable information
for tailored therapies. This study aimed to investigate the use of deep
convolutional neural networks (DCNNs) for noninvasive glioma subtyping with
radiological imaging data according to the new taxonomy announced by the World
Health Organization in 2016. Methods: A DCNN model was developed for the
prediction of the five glioma subtypes based on a hierarchical classification
paradigm. This model used three parallel, weight-sharing, deep residual
learning networks to process 2.5-dimensional input of trimodal MRI data,
including T1-weighted, T1-weighted with contrast enhancement, and T2-weighted
images. A data set comprising 1,016 real patients was collected for evaluation
of the developed DCNN model. The predictive performance was evaluated via the
area under the curve (AUC) from the receiver operating characteristic analysis.
For comparison, the performance of a radiomics-based approach was also
evaluated. Results: The AUCs of the DCNN model for the four classification
tasks in the hierarchical classification paradigm were 0.89, 0.89, 0.85, and
0.66, respectively, as compared to 0.85, 0.75, 0.67, and 0.59 of the radiomics
approach. Conclusion: The results showed that the developed DCNN model can
predict glioma subtypes with promising performance, given sufficient,
non-ill-balanced training data.
Related papers
- Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma [4.578027879885667]
This research aims to improve glioblastoma survival prediction by integrating MR images, clinical and molecular-pathologic data in a transformer-based deep learning model.
The model employs self-supervised learning techniques to effectively encode the high-dimensional MRI input for integration with non-imaging data using cross-attention.
arXiv Detail & Related papers (2024-05-21T17:44:48Z) - DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
This study proposes novel dual-current neural networks (DCNN) to improve the accuracy of fine-grained image classification.
The main novel design features for constructing a weakly supervised learning backbone model DCNN include (a) extracting heterogeneous data, (b) keeping the feature map resolution unchanged, (c) expanding the receptive field, and (d) fusing global representations and local features.
arXiv Detail & Related papers (2024-05-07T07:51:28Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
This paper introduces an end-to-end deep convolution neural network (CNN) for classifying ILDs patterns.
The proposed model comprises four convolutional layers with different kernel sizes and Rectified Linear Unit (ReLU) activation function.
A dataset consisting of 21328 image patches of 128 CT scans with five classes is taken to train and assess the proposed model.
arXiv Detail & Related papers (2022-04-21T06:36:10Z) - A Neural Ordinary Differential Equation Model for Visualizing Deep
Neural Network Behaviors in Multi-Parametric MRI based Glioma Segmentation [3.1435638364138105]
We develop a neural ordinary differential equation (ODE) model for visualizing deep neural network (DNN) during multi-parametric MRI (mp-MRI) based glioma segmentation.
All neural ODE models successfully illustrated image dynamics as expected.
arXiv Detail & Related papers (2022-03-01T17:16:41Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images [1.299941371793082]
Age-related macular degeneration (AMD) is the most common cause of blindness in developed countries, especially in people over 60 years of age.
Recent developments in deep learning have provided a unique opportunity for the development of fully automated diagnosis frameworks.
We propose a multi-scale convolutional neural network (CNN) capable of distinguishing pathologies using receptive fields with various sizes.
arXiv Detail & Related papers (2021-10-06T18:20:58Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Neural Network-derived perfusion maps: a Model-free approach to computed
tomography perfusion in patients with acute ischemic stroke [4.925222726301579]
Convolutional Neural Network (CNN) can generate clinically relevant parametric maps from CT perfusion data.
Our CNN-based approach generated clinically relevant perfusion maps that are comparable to state-of-the-art perfusion analysis methods.
arXiv Detail & Related papers (2021-01-15T07:11:02Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.