Prediction Sets Adaptive to Unknown Covariate Shift
- URL: http://arxiv.org/abs/2203.06126v6
- Date: Sat, 17 Jun 2023 18:44:29 GMT
- Title: Prediction Sets Adaptive to Unknown Covariate Shift
- Authors: Hongxiang Qiu, Edgar Dobriban, Eric Tchetgen Tchetgen
- Abstract summary: We show that prediction sets with finite-sample coverage guarantee are uninformative.
We propose a novel flexible distribution-free method, PredSet-1Step, to efficiently construct prediction sets.
- Score: 18.105704797438417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting sets of outcomes -- instead of unique outcomes -- is a promising
solution to uncertainty quantification in statistical learning. Despite a rich
literature on constructing prediction sets with statistical guarantees,
adapting to unknown covariate shift -- a prevalent issue in practice -- poses a
serious unsolved challenge. In this paper, we show that prediction sets with
finite-sample coverage guarantee are uninformative and propose a novel flexible
distribution-free method, PredSet-1Step, to efficiently construct prediction
sets with an asymptotic coverage guarantee under unknown covariate shift. We
formally show that our method is \textit{asymptotically probably approximately
correct}, having well-calibrated coverage error with high confidence for large
samples. We illustrate that it achieves nominal coverage in a number of
experiments and a data set concerning HIV risk prediction in a South African
cohort study. Our theory hinges on a new bound for the convergence rate of the
coverage of Wald confidence intervals based on general asymptotically linear
estimators.
Related papers
- Epistemic Uncertainty in Conformal Scores: A Unified Approach [2.449909275410288]
Conformal prediction methods create prediction bands with distribution-free guarantees but do not explicitly capture uncertainty.
We introduce $texttEPICSCORE$, a model-agnostic approach that enhances any conformal score by explicitly integrating uncertainty.
$texttEPICSCORE$ adaptively expands predictive intervals in regions with limited data while maintaining compact intervals where data is abundant.
arXiv Detail & Related papers (2025-02-10T19:42:54Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
It is impossible to achieve exact, distribution-free conditional coverage in finite samples.
We propose an alternative conformal prediction algorithm that targets coverage where it matters most.
arXiv Detail & Related papers (2025-01-17T12:01:56Z) - Generative Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
Conformal prediction provides model-agnostic uncertainty quantification with guaranteed coverage.
We propose a generative conformal prediction framework with vectorized non-conformity scores.
We construct adaptive uncertainty sets using density-ranked uncertainty balls.
arXiv Detail & Related papers (2024-10-17T16:37:03Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Conformal Prediction for Deep Classifier via Label Ranking [29.784336674173616]
Conformal prediction is a statistical framework that generates prediction sets with a desired coverage guarantee.
We propose a novel algorithm named $textitSorted Adaptive Prediction Sets$ (SAPS)
SAPS discards all the probability values except for the maximum softmax probability.
arXiv Detail & Related papers (2023-10-10T08:54:14Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
split conformal prediction represents a promising avenue to obtain finite-sample guarantees under minimal distribution-free assumptions.
We highlight the connection between split conformal prediction and classical tolerance predictors developed in the 1940s.
arXiv Detail & Related papers (2022-10-26T14:12:24Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
Conformal off-policy prediction can output reliable predictive intervals for the outcome under a new target policy.
We provide theoretical finite-sample guarantees without making any additional assumptions beyond the standard contextual bandit setup.
arXiv Detail & Related papers (2022-06-09T10:39:33Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.