Quantum Algorithms for Community Detection and their Empirical Run-times
- URL: http://arxiv.org/abs/2203.06208v1
- Date: Fri, 11 Mar 2022 19:02:36 GMT
- Title: Quantum Algorithms for Community Detection and their Empirical Run-times
- Authors: Chris Cade, Marten Folkertsma, Ido Niesen, Jordi Weggemans
- Abstract summary: We show that a simple quantum algorithm with a modest speedup might in fact be the one that performs best.
We repeatedly find that overheads such as those arising from the need to amplify the success of quantum sub-routines can nullify any speedup that might have been suggested by a theoretical worst- or expected-case analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We apply our recent work on empirical estimates of quantum speedups to the
practical task of community detection in complex networks. We design several
quantum variants of a popular classical algorithm -- the Louvain algorithm for
community detection -- and first study their complexities in the usual way,
before analysing their complexities empirically across a variety of artificial
and real inputs. We find that this analysis yields insights not available to us
via the asymptotic analysis, further emphasising the utility in such an
empirical approach. In particular, we observe that a complicated quantum
algorithm with a large asymptotic speedup might not be the fastest algorithm in
practice, and that a simple quantum algorithm with a modest speedup might in
fact be the one that performs best. Moreover, we repeatedly find that overheads
such as those arising from the need to amplify the success probabilities of
quantum sub-routines such as Grover search can nullify any speedup that might
have been suggested by a theoretical worst- or expected-case analysis.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Realistic Runtime Analysis for Quantum Simplex Computation [0.4407851469168588]
We present a quantum analog for classical runtime analysis when solving real-world instances of important optimization problems.
We show that a practical quantum advantage for realistic problem sizes would require quantum gate operation times that are considerably below current physical limitations.
arXiv Detail & Related papers (2023-11-16T16:11:44Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quantifying Grover speed-ups beyond asymptotic analysis [0.0]
We consider an approach that combines classical emulation with detailed complexity bounds that include all constants.
We apply our method to some simple quantum speedups of classical algorithms for solving the well-studied MAX-$k$-SAT optimization problem.
This requires rigorous bounds (including all constants) on the expected- and worst-case complexities of two important quantum sub-routines.
arXiv Detail & Related papers (2022-03-09T19:00:00Z) - Hybrid Quantum-Classical Search Algorithms [0.0]
We show that classical computation, unless it by itself can solve the Search problem, cannot assist quantum computation.
We generalize this result to algorithms with subconstant success probabilities.
arXiv Detail & Related papers (2022-02-23T11:43:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Towards quantum advantage via topological data analysis [0.0]
We study the quantum-algorithmic methods behind the algorithm for topological data analysis of Lloyd, Garnerone and Zanardi.
We provide a number of new quantum algorithms for problems such as rank estimation and complex network analysis.
arXiv Detail & Related papers (2020-05-06T06:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.