論文の概要: Energy networks for state estimation with random sensors using sparse
labels
- arxiv url: http://arxiv.org/abs/2203.06456v1
- Date: Sat, 12 Mar 2022 15:15:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-19 22:29:50.012975
- Title: Energy networks for state estimation with random sensors using sparse
labels
- Title(参考訳): 分散ラベルを用いたランダムセンサによる状態推定のためのエネルギーネットワーク
- Authors: Yash Kumar and Souvik Chakraborty
- Abstract要約: 本稿では,スパースラベルから学習可能な暗黙の最適化層と物理に基づく損失関数を用いた手法を提案する。
この手法に基づいて、空間における離散的および連続的な予測のための2つのモデルを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State estimation is required whenever we deal with high-dimensional dynamical
systems, as the complete measurement is often unavailable. It is key to gaining
insight, performing control or optimizing design tasks. Most deep
learning-based approaches require high-resolution labels and work with fixed
sensor locations, thus being restrictive in their scope. Also, doing Proper
orthogonal decomposition (POD) on sparse data is nontrivial. To tackle these
problems, we propose a technique with an implicit optimization layer and a
physics-based loss function that can learn from sparse labels. It works by
minimizing the energy of the neural network prediction, enabling it to work
with a varying number of sensors at different locations. Based on this
technique we present two models for discrete and continuous prediction in
space. We demonstrate the performance using two high-dimensional fluid problems
of Burgers' equation and Flow Past Cylinder for discrete model and using Allen
Cahn equation and Convection-diffusion equations for continuous model. We show
the models are also robust to noise in measurements.
- Abstract(参考訳): 完全な測定が利用できないことが多いため、高次元力学系を扱う場合、状態推定が必要となる。
洞察を得る、制御を実行する、あるいは設計タスクを最適化するための鍵です。
ほとんどのディープラーニングベースのアプローチは、高解像度ラベルを必要とし、固定センサー位置で動作するため、スコープが制限される。
また、スパースデータ上で適切な直交分解(pod)を行うことは非自明である。
これらの問題に対処するために,暗黙的最適化層と,スパースラベルから学習可能な物理ベースの損失関数を用いた手法を提案する。
ニューラルネットワークの予測のエネルギーを最小化することで、さまざまな場所でさまざまなセンサーを動作させることができる。
この手法に基づき,空間における離散予測と連続予測の2つのモデルを提案する。
本稿では,バーガーズ方程式とフローパスシリンダの2つの高次元流体問題を用いた離散モデルと連続モデルにおけるアレンカーン方程式と対流拡散方程式を用いた性能を示す。
モデルも測定における雑音に対して頑健であることを示す。
関連論文リスト
- Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers [0.7704032792820767]
ディープニューラルネットワークは、日々の生活の多くの領域に適用されている。
これらは、空間的に変換された入力信号に頑健に対処するなど、依然として必須の能力が欠如している。
本稿では,ニューラルネットの推論過程をエミュレートする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T09:47:29Z) - Foundational Inference Models for Dynamical Systems [5.549794481031468]
我々は,ODEによって決定されると仮定される時系列データの欠落を補うという古典的な問題に対して,新たな視点を提供する。
本稿では,いくつかの(隠れた)ODEを満たすパラメトリック関数を通じて,ゼロショット時系列計算のための新しい教師付き学習フレームワークを提案する。
我々は,1と同一(事前学習)の認識モデルが,63個の異なる時系列に対してゼロショット計算を行なえることを実証的に実証した。
論文 参考訳(メタデータ) (2024-02-12T11:48:54Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems [17.373668215331737]
本稿では,異常検出のためのディープグラフベクトルデータ記述法(SVDD)を提案する。
まず、時間的埋め込みにおけるデータ監視の短絡パターンと長絡パターンの両方を保存するために、トランスフォーマーを使用します。
センサタイプに応じてこれらの埋め込みをクラスタリングし、各種センサ間の接続性の変化を推定し、新しい重み付きグラフを構築する。
論文 参考訳(メタデータ) (2023-02-24T22:14:39Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Inference from Real-World Sparse Measurements [21.194357028394226]
実世界の問題は、しばしば複雑で非構造的な測定セットが伴うが、これはセンサーが空間または時間に狭く配置されているときに起こる。
セットからセットまで様々な位置で測定セットを処理し、どこででも読み出しを抽出できるディープラーニングアーキテクチャは、方法論的に困難である。
本稿では,適用性と実用的堅牢性に着目したアテンションベースモデルを提案する。
論文 参考訳(メタデータ) (2022-10-20T13:42:20Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GAN) は、様々なタスクやアプリケーションにおいて魅力的な結果を示している。
GANのモード崩壊問題に対処するための新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-08-25T12:33:31Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Neural Flows: Efficient Alternative to Neural ODEs [8.01886971335823]
本稿では,ORのフローである解曲線を直接ニューラルネットワークでモデル化する手法を提案する。
これにより、ニューラルネットワークのモデリング能力を維持しながら、高価な数値解法の必要性はすぐに解消される。
論文 参考訳(メタデータ) (2021-10-25T15:24:45Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。