Mathematically Quantifying Non-responsiveness of the 2021 Georgia
Congressional Districting Plan
- URL: http://arxiv.org/abs/2203.06552v2
- Date: Sun, 9 Oct 2022 16:19:39 GMT
- Title: Mathematically Quantifying Non-responsiveness of the 2021 Georgia
Congressional Districting Plan
- Authors: Zhanzhan Zhao, Cyrus Hettle, Swati Gupta, Jonathan Mattingly, Dana
Randall, Gregory Herschlag
- Abstract summary: We use a Metropolized-sampling technique through a parallel tempering method combined with ReCom.
We develop these improvements through the first case study of district plans in Georgia.
Our analysis projects that any election in Georgia will reliably elect 9 Republicans and 5 Democrats under the enacted plan.
- Score: 3.097163558730473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To audit political district maps for partisan gerrymandering, one may
determine a baseline for the expected distribution of partisan outcomes by
sampling an ensemble of maps. One approach to sampling is to use redistricting
policy as a guide to precisely codify preferences between maps. Such
preferences give rise to a probability distribution on the space of
redistricting plans, and Metropolis-Hastings methods allow one to sample
ensembles of maps from the specified distribution. Although these approaches
have nice theoretical properties and have successfully detected gerrymandering
in legal settings, sampling from commonly-used policy-driven distributions is
often computationally difficult. As of yet, there is no algorithm that can be
used off-the-shelf for checking maps under generic redistricting criteria. In
this work, we mitigate the computational challenges in a Metropolized-sampling
technique through a parallel tempering method combined with ReCom[12] and, for
the first time, validate that such techniques are effective on these problems
at the scale of statewide precinct graphs for more policy informed measures. We
develop these improvements through the first case study of district plans in
Georgia. Our analysis projects that any election in Georgia will reliably elect
9 Republicans and 5 Democrats under the enacted plan. This result is largely
fixed even as public opinion shifts toward either party and the partisan
outcome of the enacted plan does not respond to the will of the people. Only
0.12% of the $\sim$160K plans in our ensemble were similarly non-responsive.
Related papers
- Information Capacity Regret Bounds for Bandits with Mediator Feedback [55.269551124587224]
We introduce the policy set capacity as an information-theoretic measure for the complexity of the policy set.
Adopting the classical EXP4 algorithm, we provide new regret bounds depending on the policy set capacity.
For a selection of policy set families, we prove nearly-matching lower bounds, scaling similarly with the capacity.
arXiv Detail & Related papers (2024-02-15T19:18:47Z) - Less is More: Fewer Interpretable Region via Submodular Subset Selection [54.07758302264416]
This paper re-models the above image attribution problem as a submodular subset selection problem.
We construct a novel submodular function to discover more accurate small interpretation regions.
For correctly predicted samples, the proposed method improves the Deletion and Insertion scores with an average of 4.9% and 2.5% gain relative to HSIC-Attribution.
arXiv Detail & Related papers (2024-02-14T13:30:02Z) - Multiscale Parallel Tempering for Fast Sampling on Redistricting Plans [1.1233768932957773]
A persuasive method is to compare the plan with an ensemble of neutrally drawn redistricting plans.
To audit the partisan difference between the ensemble and a given plan, one must ensure that the non-partisan criteria are matched.
In this work, we generate a multiscale parallel tempering approach that makes local moves at each scale.
arXiv Detail & Related papers (2024-01-30T21:33:05Z) - Off-Policy Evaluation for Large Action Spaces via Policy Convolution [60.6953713877886]
Policy Convolution family of estimators uses latent structure within actions to strategically convolve the logging and target policies.
Experiments on synthetic and benchmark datasets demonstrate remarkable mean squared error (MSE) improvements when using PC.
arXiv Detail & Related papers (2023-10-24T01:00:01Z) - Expected Frequency Matrices of Elections: Computation, Geometry, and
Preference Learning [58.23459346724491]
We use the "map of elections" approach of Szufa et al. (AAMAS 2020) to analyze several well-known vote distributions.
We draw the "skeleton map" of distributions, evaluate its robustness, and analyze its properties.
arXiv Detail & Related papers (2022-05-16T17:40:22Z) - Implications of Distance over Redistricting Maps: Central and Outlier
Maps [6.757783454836096]
In representative democracy, a redistricting map is chosen to partition an electorate into a collection of districts each of which elects a representative.
A valid redistricting map must satisfy a collection of constraints such as being compact, contiguous, and of almost equal population.
This fact introduces a difficulty in drawing redistricting maps and it also enables a partisan legislature to possibly gerrymander by choosing a map which unfairly favors it.
arXiv Detail & Related papers (2022-03-02T04:59:30Z) - Direct Measure Matching for Crowd Counting [59.66286603624411]
We propose a new measure-based counting approach to regress the predicted density maps to the scattered point-annotated ground truth directly.
In this paper, we derive a semi-balanced form of Sinkhorn divergence, based on which a Sinkhorn counting loss is designed for measure matching.
arXiv Detail & Related papers (2021-07-04T06:37:33Z) - Colorado in Context: Congressional Redistricting and Competing Fairness
Criteria in Colorado [0.0]
We generate a large random sample of reasonable redistricting plans and determine the partisan balance of each district using returns from state-wide elections in 2018.
We investigate the relationships between partisan outcomes, number of counties which are split, and number of competitive districts in a plan.
arXiv Detail & Related papers (2020-11-11T20:05:50Z) - Distribution Matching for Crowd Counting [51.90971145453012]
We show that imposing Gaussians to annotations hurts generalization performance.
We propose to use Distribution Matching for crowd COUNTing (DM-Count)
In terms of Mean Absolute Error, DM-Count outperforms the previous state-of-the-art methods.
arXiv Detail & Related papers (2020-09-28T04:57:23Z) - Sequential Monte Carlo for Sampling Balanced and Compact Redistricting
Plans [0.0]
We present a new Sequential Monte Carlo (SMC) algorithm that generates a sample of redistricting plans converging to a realistic target distribution.
We validate the accuracy of the proposed algorithm by using a small map where all redistricting plans can be enumerated.
We then apply the SMC algorithm to evaluate the partisan implications of several maps submitted by relevant parties in a recent high-profile redistricting case in the state of Pennsylvania.
arXiv Detail & Related papers (2020-08-13T23:26:34Z) - The Essential Role of Empirical Validation in Legislative Redistricting
Simulation [0.0]
We apply a recently developed computational method that can efficiently enumerate all possible redistricting plans.
We show that this algorithm scales to a state with a couple of hundred geographical units.
arXiv Detail & Related papers (2020-06-17T20:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.