The Multi-Agent Pickup and Delivery Problem: MAPF, MARL and Its
Warehouse Applications
- URL: http://arxiv.org/abs/2203.07092v1
- Date: Mon, 14 Mar 2022 13:23:35 GMT
- Title: The Multi-Agent Pickup and Delivery Problem: MAPF, MARL and Its
Warehouse Applications
- Authors: Tim Tsz-Kit Lau and Biswa Sengupta
- Abstract summary: We study two state-of-the-art solutions to the multi-agent pickup and delivery problem based on different principles.
Specifically, a recent MAPF algorithm called conflict-based search (CBS) and a current MARL algorithm called shared experience actor-critic (SEAC) are studied.
- Score: 2.969705152497174
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study two state-of-the-art solutions to the multi-agent pickup and
delivery (MAPD) problem based on different principles -- multi-agent
path-finding (MAPF) and multi-agent reinforcement learning (MARL).
Specifically, a recent MAPF algorithm called conflict-based search (CBS) and a
current MARL algorithm called shared experience actor-critic (SEAC) are
studied. While the performance of these algorithms is measured using quite
different metrics in their separate lines of work, we aim to benchmark these
two methods comprehensively in a simulated warehouse automation environment.
Related papers
- POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators.
The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Ensembling Prioritized Hybrid Policies for Multi-agent Pathfinding [18.06081009550052]
Multi-Agent Reinforcement Learning (MARL) based Multi-Agent Path Finding (MAPF) has recently gained attention due to its efficiency and scalability.
Several MARL-MAPF methods choose to use communication to enrich the information one agent can perceive.
We propose a new method, Ensembling Prioritized Hybrid Policies (EPH)
arXiv Detail & Related papers (2024-03-12T11:47:12Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - Revisiting Some Common Practices in Cooperative Multi-Agent
Reinforcement Learning [11.91425153754564]
We show that in environments with a highly multi-modal reward landscape, value decomposition, and parameter sharing can be problematic and lead to undesired outcomes.
In contrast, policy gradient (PG) methods with individual policies provably converge to an optimal solution in these cases.
We present practical suggestions on implementing multi-agent PG algorithms for either high rewards or diverse emergent behaviors.
arXiv Detail & Related papers (2022-06-15T13:03:05Z) - Off-Policy Correction For Multi-Agent Reinforcement Learning [9.599347559588216]
Multi-agent reinforcement learning (MARL) provides a framework for problems involving multiple interacting agents.
Despite apparent similarity to the single-agent case, multi-agent problems are often harder to train and analyze theoretically.
We propose MA-Trace, a new on-policy actor-critic algorithm, which extends V-Trace to the MARL setting.
arXiv Detail & Related papers (2021-11-22T14:23:13Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z) - Compilation-based Solvers for Multi-Agent Path Finding: a Survey,
Discussion, and Future Opportunities [7.766921168069532]
We show the lessons learned from past developments and current trends in the topic and discuss its wider impact.
Two major approaches to optimal MAPF solving include (1) dedicated search-based methods, which solve MAPF directly, and (2) compilation-based methods that reduce a MAPF instance to an instance in a different well established formalism.
arXiv Detail & Related papers (2021-04-23T20:13:12Z) - Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration
for Mean-Field Reinforcement Learning [135.64775986546505]
We exploit the symmetry of agents in multi-agent reinforcement learning (MARL)
We propose MF-FQI algorithm that solves the mean-field MARL and establishes a non-asymptotic analysis for MF-FQI algorithm.
We highlight that MF-FQI algorithm enjoys a "blessing of many agents" property in the sense that a larger number of observed agents improves the performance of MF-FQI algorithm.
arXiv Detail & Related papers (2020-06-21T21:45:50Z) - Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in
Cooperative Tasks [11.480994804659908]
Multi-agent deep reinforcement learning (MARL) suffers from a lack of commonly-used evaluation tasks and criteria.
We provide a systematic evaluation and comparison of three different classes of MARL algorithms.
Our experiments serve as a reference for the expected performance of algorithms across different learning tasks.
arXiv Detail & Related papers (2020-06-14T11:22:53Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.