論文の概要: Graph-Survival: A Survival Analysis Framework for Machine Learning on
Temporal Network
- arxiv url: http://arxiv.org/abs/2203.07260v1
- Date: Mon, 14 Mar 2022 16:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-15 18:59:07.311854
- Title: Graph-Survival: A Survival Analysis Framework for Machine Learning on
Temporal Network
- Title(参考訳): Graph-Survival: 一時的ネットワーク上での機械学習のための生存分析フレームワーク
- Authors: Rapha\"el Romero, Bo Kang, Tijl De Bie
- Abstract要約: 連続時間時間ネットワークのための生成モデルを設計するためのフレームワークを提案する。
本稿では,本フレームワーク内のモデルに適合する手法と,所望の特性を持つ新しい時間ネットワークをシミュレートするアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 14.430635608400982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous time temporal networks are attracting increasing attention due
their omnipresence in real-world datasets and they manifold applications. While
static network models have been successful in capturing static topological
regularities, they often fail to model effects coming from the causal nature
that explain the generation of networks. Exploiting the temporal aspect of
networks has thus been the focus of various studies in the last decades.
We propose a framework for designing generative models for continuous time
temporal networks. Assuming a first order Markov assumption on the
edge-specific temporal point processes enables us to flexibly apply survival
analysis models directly on the waiting time between events, while using
time-varying history-based features as covariates for these predictions. This
approach links the well-documented field of temporal networks analysis through
multivariate point processes, with methodological tools adapted from survival
analysis. We propose a fitting method for models within this framework, and an
algorithm for simulating new temporal networks having desired properties. We
evaluate our method on a downstream future link prediction task, and provide a
qualitative assessment of the network simulations.
- Abstract(参考訳): 連続時間時間ネットワークは、実世界のデータセットと多様体の応用において、その全能性によって注目が集まっている。
静的ネットワークモデルは静的なトポロジカルな正規性を捉えることに成功しているが、ネットワークの生成を説明する因果的性質から生じる効果をモデル化できないことが多い。
ネットワークの時間的側面の爆発は、過去数十年間、様々な研究の焦点となっている。
連続時間時間ネットワークのための生成モデルを設計するためのフレームワークを提案する。
エッジ固有の時間点過程におけるマルコフの第一次仮定を仮定すると、時間変化履歴に基づく特徴をこれらの予測の共変量として使用しながら、イベント間の待ち時間に直接、生存分析モデルを直接柔軟に適用することができる。
このアプローチは、多変量点プロセスによる時間ネットワーク解析の文書化された分野と、生存分析に適応した方法論的ツールを結びつける。
本稿では,本フレームワーク内のモデルに適合する手法と,所望の特性を持つ新しい時間ネットワークをシミュレートするアルゴリズムを提案する。
下流リンク予測タスクにおける提案手法を評価し,ネットワークシミュレーションの質的評価を行う。
関連論文リスト
- Continuous-time Graph Representation with Sequential Survival Process [0.17265013728931003]
本稿では,リンクの継続時間と不在期間をモデル化するために,生存関数に依存するプロセスを提案する。
GraSSP: Graph Representation with Sequential Survival Processは、断続的なエッジパーシスタントネットワークを明示的に考慮した、汎用的な新しいモデルを形成する。
我々は、リンク予測やネットワーク補完など、様々な下流タスクにおいて開発されたフレームワークを定量的に評価する。
論文 参考訳(メタデータ) (2023-12-20T14:46:54Z) - An Adaptive Framework for Generalizing Network Traffic Prediction
towards Uncertain Environments [51.99765487172328]
我々は,モバイルネットワークトラフィック予測モデルを動的に割り当てるための時系列解析を用いた新しいフレームワークを開発した。
我々のフレームワークは学習した振る舞いを採用しており、現在の研究と比較して50%以上の改善が得られ、どのモデルよりも優れています。
論文 参考訳(メタデータ) (2023-11-30T18:58:38Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - A Generic Approach to Integrating Time into Spatial-Temporal Forecasting
via Conditional Neural Fields [1.7661845949769062]
本稿では,時間成分を予測モデルに統合する一般的な手法を提案する。
主要なアイデアは、時間成分から抽出された補助的特徴を表現するために条件付きニューラルネットワークを使用することである。
道路交通とセルラーネットワーク交通データセットの実験は,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-05-11T14:20:23Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
時間的ネットワーク上での機械学習の方法は、一般的に2つの制限のうちの少なくとも1つを示す。
ネットワークのライングラフは,各インタラクションのノードを含むもので,インタラクション間の時間差に基づいて,このグラフのエッジを重み付けする。
実世界のネットワークにおける実験結果から,エッジ分類と時間リンク予測の両方において,本手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-09-30T18:24:13Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
自己回帰的リカレントニューラルネットワークとインプリシット量子ネットワークを併用して、時系列ターゲット上の大規模な分布を学習する。
提案手法は, 時間分布の推定だけでなく, ポイントワイズ予測精度の観点からも好適である。
論文 参考訳(メタデータ) (2021-07-08T10:37:24Z) - EPNE: Evolutionary Pattern Preserving Network Embedding [26.06068388979255]
本研究では,ノードの局所構造の進化パターンを保存するための時間ネットワーク埋め込みモデルEPNEを提案する。
時間情報の適切なモデリングにより,本モデルは様々な予測タスクにおいて,他の競合手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-24T06:31:14Z) - TempNodeEmb:Temporal Node Embedding considering temporal edge influence
matrix [0.8941624592392746]
時間的ネットワークにおけるノード間の将来のリンクを予測することは、時間的ネットワークの進化の重要な側面を明らかにする。
いくつかのアプローチは、時間ネットワークの単純化された表現を、高次元で一般にスパース行列で考える。
本稿では, 単純な3層グラフニューラルネットワークを各ステップで考慮し, ネットワークの進化特性を利用した新しいノード埋め込み手法を提案する。
論文 参考訳(メタデータ) (2020-08-16T15:39:07Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。