Graph-Survival: A Survival Analysis Framework for Machine Learning on
Temporal Networks
- URL: http://arxiv.org/abs/2203.07260v2
- Date: Tue, 15 Mar 2022 13:05:13 GMT
- Title: Graph-Survival: A Survival Analysis Framework for Machine Learning on
Temporal Networks
- Authors: Rapha\"el Romero, Bo Kang, Tijl De Bie
- Abstract summary: We propose a framework for designing generative models for continuous time temporal networks.
We propose a fitting method for models within this framework, and an algorithm for simulating new temporal networks having desired properties.
- Score: 14.430635608400982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous time temporal networks are attracting increasing attention due
their omnipresence in real-world datasets and they manifold applications. While
static network models have been successful in capturing static topological
regularities, they often fail to model effects coming from the causal nature
that explain the generation of networks. Exploiting the temporal aspect of
networks has thus been the focus of various studies in the last decades.
We propose a framework for designing generative models for continuous time
temporal networks. Assuming a first order Markov assumption on the
edge-specific temporal point processes enables us to flexibly apply survival
analysis models directly on the waiting time between events, while using
time-varying history-based features as covariates for these predictions. This
approach links the well-documented field of temporal networks analysis through
multivariate point processes, with methodological tools adapted from survival
analysis. We propose a fitting method for models within this framework, and an
algorithm for simulating new temporal networks having desired properties. We
evaluate our method on a downstream future link prediction task, and provide a
qualitative assessment of the network simulations.
Related papers
- Continuous-time Graph Representation with Sequential Survival Process [0.17265013728931003]
We propose a process relying on survival functions to model the durations of links and their absences over time.
GraSSP: Graph Representation with Sequential Survival Process forms a generic new likelihood explicitly accounting for intermittent edge-persistent networks.
We quantitatively assess the developed framework in various downstream tasks, such as link prediction and network completion.
arXiv Detail & Related papers (2023-12-20T14:46:54Z) - An Adaptive Framework for Generalizing Network Traffic Prediction
towards Uncertain Environments [51.99765487172328]
We have developed a new framework using time-series analysis for dynamically assigning mobile network traffic prediction models.
Our framework employs learned behaviors, outperforming any single model with over a 50% improvement relative to current studies.
arXiv Detail & Related papers (2023-11-30T18:58:38Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - A Generic Approach to Integrating Time into Spatial-Temporal Forecasting
via Conditional Neural Fields [1.7661845949769062]
This paper presents a general approach to integrating the time component into forecasting models.
The main idea is to employ conditional neural fields to represent the auxiliary features extracted from the time component.
Experiments on road traffic and cellular network traffic datasets prove the effectiveness of the proposed approach.
arXiv Detail & Related papers (2023-05-11T14:20:23Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
Methods for machine learning on temporal networks generally exhibit at least one of two limitations.
We present a simple method that avoids both shortcomings: construct the line graph of the network, which includes a node for each interaction, and weigh the edges of this graph based on the difference in time between interactions.
Empirical results on real-world networks demonstrate our method's efficacy and efficiency on both edge classification and temporal link prediction.
arXiv Detail & Related papers (2022-09-30T18:24:13Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
We combine an autoregressive recurrent neural network to model temporal dynamics with Implicit Quantile Networks to learn a large class of distributions over a time-series target.
Our approach is favorable in terms of point-wise prediction accuracy as well as on estimating the underlying temporal distribution.
arXiv Detail & Related papers (2021-07-08T10:37:24Z) - EPNE: Evolutionary Pattern Preserving Network Embedding [26.06068388979255]
We propose EPNE, a temporal network embedding model preserving evolutionary patterns of the local structure of nodes.
With the adequate modeling of temporal information, our model is able to outperform other competitive methods in various prediction tasks.
arXiv Detail & Related papers (2020-09-24T06:31:14Z) - TempNodeEmb:Temporal Node Embedding considering temporal edge influence
matrix [0.8941624592392746]
Predicting future links among the nodes in temporal networks reveals an important aspect of the evolution of temporal networks.
Some approaches consider a simplified representation of temporal networks but in high-dimensional and generally sparse matrices.
We propose a new node embedding technique which exploits the evolving nature of the networks considering a simple three-layer graph neural network at each time step.
arXiv Detail & Related papers (2020-08-16T15:39:07Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.