論文の概要: Defending From Physically-Realizable Adversarial Attacks Through
Internal Over-Activation Analysis
- arxiv url: http://arxiv.org/abs/2203.07341v1
- Date: Mon, 14 Mar 2022 17:41:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-15 14:08:00.207388
- Title: Defending From Physically-Realizable Adversarial Attacks Through
Internal Over-Activation Analysis
- Title(参考訳): 内部オーバーアクティベーション解析による物理的に実現可能な敵の攻撃からの防御
- Authors: Giulio Rossolini, Federico Nesti, Fabio Brau, Alessandro Biondi and
Giorgio Buttazzo
- Abstract要約: Z-Maskは、敵の攻撃に対する畳み込みネットワークの堅牢性を改善するための堅牢で効果的な戦略である。
提示されたディフェンスは、入力画像中の対向対象に対応する画素を検出し、隠蔽するために、内部ネットワーク機能で実行される特定のZスコア解析に依存する。
追加の実験では、Z-Maskは防衛対応攻撃に対して堅牢であることが示された。
- 参考スコア(独自算出の注目度): 61.68061613161187
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work presents Z-Mask, a robust and effective strategy to improve the
adversarial robustness of convolutional networks against physically-realizable
adversarial attacks. The presented defense relies on specific Z-score analysis
performed on the internal network features to detect and mask the pixels
corresponding to adversarial objects in the input image. To this end, spatially
contiguous activations are examined in shallow and deep layers to suggest
potential adversarial regions. Such proposals are then aggregated through a
multi-thresholding mechanism. The effectiveness of Z-Mask is evaluated with an
extensive set of experiments carried out on models for both semantic
segmentation and object detection. The evaluation is performed with both
digital patches added to the input images and printed patches positioned in the
real world. The obtained results confirm that Z-Mask outperforms the
state-of-the-art methods in terms of both detection accuracy and overall
performance of the networks under attack. Additional experiments showed that
Z-Mask is also robust against possible defense-aware attacks.
- Abstract(参考訳): 本研究は,畳み込みネットワークの対向ロバスト性を改善するためのロバストかつ効果的な戦略であるz-maskを提案する。
提示された防御は、入力画像内の敵オブジェクトに対応する画素を検出し、マスキングするために、内部ネットワーク機能で実行される特定のz-スコア分析に依存する。
この目的のために,浅層および深層で空間的に連続的な活性化を調べた。
このような提案は、マルチthresholdingメカニズムによって集約される。
z-maskの有効性をセマンティクスセグメンテーションとオブジェクト検出の両方のモデル上で行った広範囲な実験により評価した。
入力画像にデジタルパッチを付加し、実世界に位置する印刷パッチを印字して評価を行う。
その結果、Z-Maskは攻撃中のネットワークの検知精度と全体的な性能の両方において最先端の手法より優れていることを確認した。
追加の実験では、Z-Maskは防衛対応攻撃に対して堅牢であることが示された。
関連論文リスト
- Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis [12.133306321357999]
セグメンテーションのためのニューラルネットワークに対する敵攻撃を検出する不確実性に基づく手法を提案する。
我々は,不確実性に基づく敵攻撃の検出と様々な最先端ニューラルネットワークの詳細な解析を行う。
提案手法の有効性を示す数値実験を行った。
論文 参考訳(メタデータ) (2024-08-19T14:13:30Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement [68.31147013783387]
我々は,アテンション機構がパッチベースの敵攻撃に弱いことを観察した。
本稿では,意味的セグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
論文 参考訳(メタデータ) (2024-01-03T13:58:35Z) - ODDR: Outlier Detection & Dimension Reduction Based Defense Against Adversarial Patches [4.4100683691177816]
敵対的攻撃は、機械学習モデルの信頼性の高いデプロイに重大な課題をもたらす。
パッチベースの敵攻撃に対処するための総合的な防御戦略である外乱検出・次元削減(ODDR)を提案する。
提案手法は,逆パッチに対応する入力特徴を外れ値として同定できるという観測に基づいている。
論文 参考訳(メタデータ) (2023-11-20T11:08:06Z) - Robust Adversarial Attacks Detection for Deep Learning based Relative
Pose Estimation for Space Rendezvous [8.191688622709444]
本稿では,ディープニューラルネットワークを用いた相対ポーズ推定手法の逆攻撃検出のための新しい手法を提案する。
提案した対向攻撃検出器は99.21%の精度で検出できる。
論文 参考訳(メタデータ) (2023-11-10T11:07:31Z) - Uncertainty-based Detection of Adversarial Attacks in Semantic
Segmentation [16.109860499330562]
本稿では,セマンティックセグメンテーションにおける敵攻撃検出のための不確実性に基づくアプローチを提案する。
本研究は,複数種類の敵対的攻撃を対象とする摂動画像の検出能力を示す。
論文 参考訳(メタデータ) (2023-05-22T08:36:35Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
現実世界の敵対的な例(通常はパッチの形で)の存在は、安全クリティカルなコンピュータビジョンタスクにおけるディープラーニングモデルの使用に深刻な脅威をもたらす。
本稿では,異なる種類の対立パッチを攻撃した場合のセマンティックセグメンテーションモデルのロバスト性を評価する。
画素の誤分類を誘導する攻撃者の能力を改善するために, 新たな損失関数を提案する。
論文 参考訳(メタデータ) (2022-01-05T22:33:43Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。