論文の概要: An Introduction to Multi-Agent Reinforcement Learning and Review of its
Application to Autonomous Mobility
- arxiv url: http://arxiv.org/abs/2203.07676v1
- Date: Tue, 15 Mar 2022 06:40:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-16 15:43:09.899584
- Title: An Introduction to Multi-Agent Reinforcement Learning and Review of its
Application to Autonomous Mobility
- Title(参考訳): マルチエージェント強化学習入門と自律型モビリティへの応用
- Authors: Lukas M. Schmidt, Johanna Brosig, Axel Plinge, Bjoern M. Eskofier,
Christopher Mutschler
- Abstract要約: マルチエージェント強化学習(MARL、Multi-Agent Reinforcement Learning)は、複数のエージェントが相互に相互作用する最適な解を見つけることを目的とした研究分野である。
この研究は、自律移動の研究者にこの分野の概要を提供することを目的としている。
- 参考スコア(独自算出の注目度): 1.496194593196997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many scenarios in mobility and traffic involve multiple different agents that
need to cooperate to find a joint solution. Recent advances in behavioral
planning use Reinforcement Learning to find effective and performant behavior
strategies. However, as autonomous vehicles and vehicle-to-X communications
become more mature, solutions that only utilize single, independent agents
leave potential performance gains on the road. Multi-Agent Reinforcement
Learning (MARL) is a research field that aims to find optimal solutions for
multiple agents that interact with each other. This work aims to give an
overview of the field to researchers in autonomous mobility. We first explain
MARL and introduce important concepts. Then, we discuss the central paradigms
that underlie MARL algorithms, and give an overview of state-of-the-art methods
and ideas in each paradigm. With this background, we survey applications of
MARL in autonomous mobility scenarios and give an overview of existing
scenarios and implementations.
- Abstract(参考訳): モビリティとトラフィックの多くのシナリオは、共同ソリューションを見つけるために協力する必要がある複数の異なるエージェントを含んでいる。
行動計画の最近の進歩は強化学習を用いて効果的な行動戦略を見つける。
しかし、自動運転車や車間通信が成熟するにつれて、単独の独立したエージェントのみを利用するソリューションは、道路上での潜在的なパフォーマンス向上を後押しする。
マルチエージェント強化学習(MARL、Multi-Agent Reinforcement Learning)は、複数のエージェントが相互に相互作用する最適な解を見つけることを目的とした研究分野である。
この研究は、自律移動の研究者にこの分野の概要を提供することを目的としている。
まずmarlを説明し、重要な概念を紹介します。
次に,marlアルゴリズムを支える中心的なパラダイムについて論じ,各パラダイムにおける最先端の手法とアイデアについて概説する。
この背景から,自律移動シナリオにおけるMARLの適用状況を調査し,既存のシナリオと実装の概要を紹介する。
関連論文リスト
- KoMA: Knowledge-driven Multi-agent Framework for Autonomous Driving with Large Language Models [15.951550445568605]
自律エージェントとしての大規模言語モデル(LLM)は、知識駆動的な方法で現実の課題に取り組むための新しい道筋を提供する。
我々は,マルチエージェントインタラクション,マルチステップ計画,共有メモリ,ランキングベースのリフレクションモジュールからなるKoMAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-19T12:13:08Z) - A Distributed Approach to Autonomous Intersection Management via Multi-Agent Reinforcement Learning [4.659033572014701]
高度な補助システムに3Dサラウンドビュー技術を活用することで、自律走行車は集中制御装置を必要とせずに交差点のシナリオを正確にナビゲートできることを示す。
従来型のAIM技術に対する革新的な代替手段としてのアプローチを検証し,その結果の完全な有効性を確保する。
論文 参考訳(メタデータ) (2024-05-14T14:34:24Z) - Beyond One Model Fits All: Ensemble Deep Learning for Autonomous
Vehicles [16.398646583844286]
本研究では,Mediated Perception, Behavior Reflex, Direct Perceptionの3つの異なるニューラルネットワークモデルを紹介する。
我々のアーキテクチャは、グローバルなルーティングコマンドを使用して、ベース、将来の潜伏ベクトル予測、補助タスクネットワークからの情報を融合し、適切なアクションサブネットワークを選択する。
論文 参考訳(メタデータ) (2023-12-10T04:40:02Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
大規模に多様なデータに基づいて事前訓練された基礎モデルは、幅広いビジョンと言語タスクにおいて異常な能力を示してきた。
ファンデーションモデルをトレーニングし、他のエージェントと対話し、長期的な推論を行うための新しいパラダイムが生まれている。
基礎モデルと意思決定の交わりにおける研究は、強力な新しいシステムを作るための大きな約束である。
論文 参考訳(メタデータ) (2023-03-07T18:44:07Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Collaborative Visual Navigation [69.20264563368762]
マルチエージェント視覚ナビゲーション(MAVN)のための大規模3次元データセットCollaVNを提案する。
様々なMAVN変種を探索し、この問題をより一般化する。
メモリ拡張通信フレームワークを提案する。各エージェントには、通信情報を永続的に保存するプライベートな外部メモリが備わっている。
論文 参考訳(メタデータ) (2021-07-02T15:48:16Z) - SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
Autonomous Driving [96.50297622371457]
マルチエージェントインタラクションは、現実の世界における自律運転の基本的な側面である。
研究と開発が10年以上続いたにもかかわらず、様々なシナリオで多様な道路ユーザーと対話する方法の問題は未解決のままである。
SMARTSと呼ばれる,多種多様な運転インタラクションを生成する専用シミュレーションプラットフォームを開発した。
論文 参考訳(メタデータ) (2020-10-19T18:26:10Z) - MIDAS: Multi-agent Interaction-aware Decision-making with Adaptive
Strategies for Urban Autonomous Navigation [22.594295184455]
そこで本研究では,エゴエージェントが他車の制御動作に影響を与えることを学習する,MIDASと呼ばれる強化学習手法を構築した。
MIDAS は広範にわたる実験により検証され,(i) 異なる道路測地をまたいで動作可能であること,(ii) 外部エージェントの駆動方針の変化に対して堅牢であること,(iv) インタラクション対応意思決定に対する既存のアプローチよりも効率的で安全であること,などが示されている。
論文 参考訳(メタデータ) (2020-08-17T04:34:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。