Single-photon scattering in a giant-molecule waveguide-QED system
- URL: http://arxiv.org/abs/2203.07812v2
- Date: Sun, 31 Jul 2022 14:29:19 GMT
- Title: Single-photon scattering in a giant-molecule waveguide-QED system
- Authors: Xian-Li Yin, Yu-Hong Liu, Jin-Feng Huang, Jie-Qiao Liao
- Abstract summary: We study the coherent single-photon scattering in a one-dimensional waveguide coupled to a giant artificial molecule consisting of two coupled giant atoms.
We obtain the exact expressions of the single-photon transmission and reflection amplitudes with the real-space approach.
This paper will pave the way for the study of controllable single-photon devices based on the giant-molecule waveguide-QED systems.
- Score: 5.826796031213696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the coherent single-photon scattering in a one-dimensional waveguide
coupled to a giant artificial molecule consisting of two coupled giant atoms.
Since each giant atom couples to the waveguide via two coupling points, the
couplings of the molecule with the waveguide have three different coupling
configurations: the separated-, braided-, and nested-coupling cases. We obtain
the exact expressions of the single-photon transmission and reflection
amplitudes with the real-space approach. It is found that the behavior of the
scattering spectra depends on the phase shift between two neighboring coupling
points, the coupling configuration, and the coupling between the two giant
atoms. Concretely, we study the photon scattering in both the Markovian and
non-Markovian regimes, in which the photon propagating time between two
neighboring coupling points is neglected and considered, respectively. Under
the Markovian limit, the asymmetric Fano line shapes in different coupling
configurations of the giant-molecule waveguide-QED system can be obtained by
choosing proper phase shift, and the transmission window can be adjusted by the
coupling strength between the two giant atoms in these three coupling
configurations. In particular, multiple reflection peaks and dips in these
configurations are revived in the non-Markovian regime. This paper will pave
the way for the study of controllable single-photon devices based on the
giant-molecule waveguide-QED systems.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Single-photon scattering in giant-atom topological-waveguide-QED systems [1.2479554210753663]
We study single-photon scattering in a Su-Schrieffer-Heeger (SSH) waveguide coupled to either one or two two-level giant atoms.
We find that a single photon in the SSH waveguide can be completely reflected or transmitted by choosing proper coupling configurations.
This work will inspire the development of controllable single-photon devices based on the giant-atom topological-waveguide-QED systems.
arXiv Detail & Related papers (2024-08-26T10:57:23Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Controlling photons by phonons via giant atom in a waveguide QED setup [9.645624468000271]
We investigate the single photon scattering in a phonon-photon hybrid system in the waveguide QED scheme.
Our study paves the way for the potential application of giant atoms in the hybrid system.
arXiv Detail & Related papers (2023-06-30T07:36:57Z) - Chiral and nonreciprocal single-photon scattering in a
chiral-giant-molecule waveguide-QED system [0.3621816213357969]
We study chiral and nonreciprocal single-photon scattering in a chiral-giant-molecule waveguide-QED system.
In the non-Markovian regime, the scattering spectra are characterized by more abundant structures with multiple peaks and dips.
Our results have potential applications in the design of optical quantum devices involving giant atoms.
arXiv Detail & Related papers (2023-06-19T14:19:46Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Engineering symmetry-selective couplings of a superconducting artificial
molecule to microwave waveguides [0.0]
We demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides.
We show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides.
We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
arXiv Detail & Related papers (2022-02-24T17:16:11Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Microwave multiphoton conversion via coherently driven permanent dipole
systems [68.8204255655161]
We investigate a leaking single-mode quantized cavity field coupled with a resonantly driven two-level system possessing permanent dipoles.
The frequencies of the interacting subsystems are being considered very different, e.g., microwave ranges for the cavity and optical domains for the frequency of the two-level emitter, respectively.
arXiv Detail & Related papers (2020-08-12T16:20:44Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Single-photon scattering and bound states in an atom-waveguide system
with two or multiple coupling points [4.703879128689288]
In this paper, we investigate the single-photon scattering and bound states in a one-dimensional coupled-resonator waveguide.
When the atom couples to the waveguide via two resonators, the single-photon reflection rate is characterized by either Breit-Wigner or Fano line shapes.
We also find a phase transition phenomena for the multi-resonator coupling case, which reveals that the upper bound state only exists when the atom-waveguide coupling strength is above a critical value.
arXiv Detail & Related papers (2020-01-02T12:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.