Chiral and nonreciprocal single-photon scattering in a
chiral-giant-molecule waveguide-QED system
- URL: http://arxiv.org/abs/2306.10957v1
- Date: Mon, 19 Jun 2023 14:19:46 GMT
- Title: Chiral and nonreciprocal single-photon scattering in a
chiral-giant-molecule waveguide-QED system
- Authors: Juan Zhou, Xian-Li Yin, Jie-Qiao Liao
- Abstract summary: We study chiral and nonreciprocal single-photon scattering in a chiral-giant-molecule waveguide-QED system.
In the non-Markovian regime, the scattering spectra are characterized by more abundant structures with multiple peaks and dips.
Our results have potential applications in the design of optical quantum devices involving giant atoms.
- Score: 0.3621816213357969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study chiral and nonreciprocal single-photon scattering in a
chiral-giant-molecule waveguide-QED system. Here, the giant molecule consists
of two coupled giant atoms, which interact with two linear waveguides, forming
a four-port quantum device. We obtain the exact analytical expressions of the
four scattering amplitudes using a real-space method. Under the Markovian
limit, we find that the single-photon scattering behavior is determined by the
coupling strength between the giant atoms and the waveguides, the coupling
strength between the two giant atoms, and the nondipole effect caused by the
phase accumulation of photons travelling between the coupling points. It is
also found that chiral and nonreciprocal single-photon scattering can be
realized by introducing the chiral coupling to break the symmetry in the
coupling configuration between the giant molecule and the waveguides. In
addition, an ideal chiral emitter-waveguide coupling enables a directional
single-photon routing. In the non-Markovian regime, the scattering spectra are
characterized by more abundant structures with multiple peaks and dips. In
particular, we demonstrate that the non-Markovian retarded effect can induce
the nonreciprocal single-photon scattering. Our results have potential
applications in the design of optical quantum devices involving giant atoms,
which can provide an efficient platform for studying chiral quantum optics.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Single-photon scattering in giant-atom topological-waveguide-QED systems [1.2479554210753663]
We study single-photon scattering in a Su-Schrieffer-Heeger (SSH) waveguide coupled to either one or two two-level giant atoms.
We find that a single photon in the SSH waveguide can be completely reflected or transmitted by choosing proper coupling configurations.
This work will inspire the development of controllable single-photon devices based on the giant-atom topological-waveguide-QED systems.
arXiv Detail & Related papers (2024-08-26T10:57:23Z) - Single photon scattering from a chain of giant atoms coupled to a
one-dimensional waveguide [0.0]
We investigate coherent single-photon transport in a waveguide quantum electrodynamics system containing multiple giant atoms.
We find that the non-dipole effects of giant atoms can strongly manipulate several types of collective properties of the output fields.
We propose to probe the topological states of a chain of braided giant atoms by using photon scattering spectra.
arXiv Detail & Related papers (2024-03-02T08:17:55Z) - Single-photon scattering in giant-atom waveguide systems with chiral coupling [5.482382662576134]
We study single-photon scattering spectra of a giant atom chirally coupled to a one-dimensional waveguide at multiple connection points.
We show that the transmission spectrum of an incident photon can undergo a transition from complete transmission to total reflection at multiple frequency.
The giant-atom-waveguide system with chiral coupling is a promising candidate for realizing single-photon routers with multiple channels.
arXiv Detail & Related papers (2024-01-03T07:54:27Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Single-photon scattering in a giant-molecule waveguide-QED system [5.826796031213696]
We study the coherent single-photon scattering in a one-dimensional waveguide coupled to a giant artificial molecule consisting of two coupled giant atoms.
We obtain the exact expressions of the single-photon transmission and reflection amplitudes with the real-space approach.
This paper will pave the way for the study of controllable single-photon devices based on the giant-molecule waveguide-QED systems.
arXiv Detail & Related papers (2022-03-15T12:01:03Z) - Coherent single-photon scattering spectra for a giant-atom waveguide-QED
system beyond dipole approximation [0.0]
We investigate the single-photon scattering spectra of a giant atom coupled to a one dimensional waveguide via multiple connection points or a continuous coupling region.
We find that under the Markovian limit, the phase decay is detuning-independent, resulting in Lorentzian lineshapes.
In the non-Markovian regime, the accumulated phases become detuning-dependent, giving rise to non-Lorentzian lineshapes.
arXiv Detail & Related papers (2022-01-13T06:52:18Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.