論文の概要: Unsupervised Learning Based Focal Stack Camera Depth Estimation
- arxiv url: http://arxiv.org/abs/2203.07904v1
- Date: Mon, 14 Mar 2022 02:52:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-16 15:10:22.573180
- Title: Unsupervised Learning Based Focal Stack Camera Depth Estimation
- Title(参考訳): 焦点スタックカメラ深度推定に基づく教師なし学習
- Authors: Zhengyu Huang, Weizhi Du and Theodore B. Norris
- Abstract要約: 焦点スタックカメラ画像から深度を推定する 教師なし深層学習法。
本手法は,NYU-v2データセットにおいて,単一画像に基づく手法と比較して,より優れた深度推定精度を実現する。
- 参考スコア(独自算出の注目度): 2.0625936401496237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an unsupervised deep learning based method to estimate depth from
focal stack camera images. On the NYU-v2 dataset, our method achieves much
better depth estimation accuracy compared to single-image based methods.
- Abstract(参考訳): 焦点スタックカメラ画像から深度を推定するための教師なし深度学習法を提案する。
nyu-v2データセットでは,単像法に比べて奥行き推定精度が大幅に向上した。
関連論文リスト
- Exploring Deep Learning Image Super-Resolution for Iris Recognition [50.43429968821899]
重畳自動エンコーダ(SAE)と畳み込みニューラルネットワーク(CNN)の2つの深層学習単一画像超解法手法を提案する。
精度評価と認識実験により,1.872個の近赤外虹彩画像のデータベースを用いて評価を行い,比較アルゴリズムよりも深層学習の方が優れていることを示す。
論文 参考訳(メタデータ) (2023-11-02T13:57:48Z) - Multi-Camera Collaborative Depth Prediction via Consistent Structure
Estimation [75.99435808648784]
本稿では,新しいマルチカメラ協調深度予測法を提案する。
カメラ間の構造的整合性を維持しながら、大きな重なり合う領域を必要としない。
DDADおよびNuScenesデータセットの実験結果から,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-05T03:44:34Z) - Uncertainty Guided Depth Fusion for Spike Camera [49.41822923588663]
スパイクカメラのための単分子およびステレオ深度推定ネットワークの予測を融合させる新しい不確かさ誘導深度融合(UGDF)フレームワークを提案する。
我々のフレームワークは、ステレオスパイク深さ推定がより近い範囲でより良い結果をもたらすという事実に動機づけられている。
従来のカメラ深度推定よりもスパイク深度推定の利点を示すため、我々はCitySpike20Kというスパイク深度データセットに貢献する。
論文 参考訳(メタデータ) (2022-08-26T13:04:01Z) - Learning Occlusion-Aware Coarse-to-Fine Depth Map for Self-supervised
Monocular Depth Estimation [11.929584800629673]
自己教師付き単眼深度推定のためのOcclusion-aware Coarse-to-Fine Depth Mapを学習するための新しいネットワークを提案する。
提案したOCFD-Netは,粗度深度マップの学習に離散深度制約を用いるだけでなく,シーン深度残差の学習にも連続深度制約を用いる。
論文 参考訳(メタデータ) (2022-03-21T12:43:42Z) - Bridging Unsupervised and Supervised Depth from Focus via All-in-Focus
Supervision [10.547816678110417]
提案手法は、地上の真理深度で監督的に訓練するか、AiF画像で監督的に訓練することができる。
種々の実験において,本手法は定量的かつ定性的に,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-24T17:09:13Z) - Learning Multi-modal Information for Robust Light Field Depth Estimation [32.64928379844675]
focalスタックからの既存の学習に基づく深さ推定手法は、デフォーカスのぼやけのため、準最適性能に繋がる。
堅牢な光界深度推定のためのマルチモーダル学習法を提案する。
本手法は,2つの光場データセットにおいて,既存の代表手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2021-04-13T06:51:27Z) - Robust Consistent Video Depth Estimation [65.53308117778361]
本稿では,単眼映像からカメラのカメラポーズと密集した深度マップを推定するアルゴリズムを提案する。
本手法は,(1)低周波大規模アライメントのためのフレキシブルな変形-スプラインと(2)細部奥行き詳細の高周波アライメントのための幾何認識深度フィルタリングとを組み合わせた手法である。
従来の手法とは対照的に, カメラのポーズを入力として必要とせず, かなりの音量, 揺動, 動きのぼやき, 転がりシャッター変形を含む携帯のハンドヘルドキャプチャに頑健な再構成を実現する。
論文 参考訳(メタデータ) (2020-12-10T18:59:48Z) - Self-Supervised Learning for Monocular Depth Estimation from Aerial
Imagery [0.20072624123275526]
航空画像からの単眼深度推定のための自己教師型学習法を提案する。
このために、単一の移動カメラからの画像シーケンスのみを使用し、深度を同時に推定し、情報をポーズすることを学ぶ。
ポーズと深さ推定の重みを共有することによって、比較的小さなモデルが実現され、リアルタイムの応用が好まれる。
論文 参考訳(メタデータ) (2020-08-17T12:20:46Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
単一のRGB画像から深度を推定することはコンピュータビジョンの基本的な課題である。
この作業では、異なる視点ではなく、フォーカスキューからの奥行きに依存しています。
我々は,KITTIとMake3Dデータセットの教師あり手法と同等な結果を提示し,教師なし学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-14T20:22:54Z) - Video Depth Estimation by Fusing Flow-to-Depth Proposals [65.24533384679657]
本稿では,映像深度推定のためのフロー・ツー・ディープス・レイヤの異なる手法を提案する。
モデルは、フロー・トゥ・ディープス層、カメラ・ポーズ・リファインメント・モジュール、ディープ・フュージョン・ネットワークから構成される。
提案手法は,最先端の深度推定法より優れ,合理的なデータセット一般化能力を有する。
論文 参考訳(メタデータ) (2019-12-30T10:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。