論文の概要: Exploring Deep Learning Image Super-Resolution for Iris Recognition
- arxiv url: http://arxiv.org/abs/2311.01241v1
- Date: Thu, 2 Nov 2023 13:57:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 13:25:19.168494
- Title: Exploring Deep Learning Image Super-Resolution for Iris Recognition
- Title(参考訳): 虹彩認識のための深層学習画像超解法探索
- Authors: Eduardo Ribeiro, Andreas Uhl, Fernando Alonso-Fernandez, Reuben A.
Farrugia
- Abstract要約: 重畳自動エンコーダ(SAE)と畳み込みニューラルネットワーク(CNN)の2つの深層学習単一画像超解法手法を提案する。
精度評価と認識実験により,1.872個の近赤外虹彩画像のデータベースを用いて評価を行い,比較アルゴリズムよりも深層学習の方が優れていることを示す。
- 参考スコア(独自算出の注目度): 50.43429968821899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we test the ability of deep learning methods to provide an
end-to-end mapping between low and high resolution images applying it to the
iris recognition problem. Here, we propose the use of two deep learning
single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and
Convolutional Neural Networks (CNN) with the most possible lightweight
structure to achieve fast speed, preserve local information and reduce
artifacts at the same time. We validate the methods with a database of 1.872
near-infrared iris images with quality assessment and recognition experiments
showing the superiority of deep learning approaches over the compared
algorithms.
- Abstract(参考訳): 本研究では,虹彩認識問題に適用する低解像度画像と高画質画像間のエンドツーエンドマッピングを提供するための深層学習手法の能力をテストする。
本稿では,高速化,局所的情報保存,アーティファクトの削減を同時に実現するために,最軽量構造を持つスタック型オートエンコーダ(sae)と畳み込みニューラルネットワーク(cnn)の2つのディープラーニングによる超解像手法を提案する。
精度評価と認識実験により,1.872個の近赤外虹彩画像のデータベースを用いて評価を行い,比較アルゴリズムよりも深層学習の方が優れていることを示す。
関連論文リスト
- An Enhanced Low-Resolution Image Recognition Method for Traffic
Environments [3.018656336329545]
低解像度の画像は、小さなサイズ、低い品質、詳細さの欠如に悩まされ、従来のニューラルネットワーク認識アルゴリズムの精度が低下する。
本稿では、残差ネットワークの基本構造と共通特徴部分空間アルゴリズムを利用する二重分岐残差ネットワーク構造を提案する。
低解像度画像認識の精度を高めるために、中間層特徴の利用を取り入れている。
論文 参考訳(メタデータ) (2023-09-28T12:38:31Z) - One-stage Low-resolution Text Recognition with High-resolution Knowledge
Transfer [53.02254290682613]
現在の低解像度テキスト認識のソリューションは、通常2段階のパイプラインに依存している。
本稿では,多段階の知識伝達を実現するための効率的かつ効果的な知識蒸留フレームワークを提案する。
実験の結果、提案されたワンステージパイプラインは、超高解像度ベースの2ステージフレームワークよりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-08-05T02:33:45Z) - Cross-resolution Face Recognition via Identity-Preserving Network and
Knowledge Distillation [12.090322373964124]
クロスレゾリューション顔認識は、現代の深層顔認識システムにとって難しい問題である。
本稿では,低分解能画像の低周波成分に蓄積される識別情報にネットワークを集中させる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-15T14:52:46Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
特に畳み込みニューラルネットワーク(CNN)を用いた単一画像超解像技術が出現している
本研究では, 虹彩認識のためのCNNを用いて, 単一画像の超解像を探索する。
彼らは、近赤外線虹彩画像の1.872のデータベースと携帯電話画像データベースのアプローチを検証する。
論文 参考訳(メタデータ) (2022-10-24T11:19:18Z) - Super-Resolution and Image Re-projection for Iris Recognition [67.42500312968455]
異なるディープラーニングアプローチを用いた畳み込みニューラルネットワーク(CNN)は、解像度の低い画像から現実的なテクスチャときめ細かい詳細を復元しようとする。
本研究は、虹彩認識環境における虹彩超解法(SR)に対するこれらのアプローチの実現可能性について検討する。
その結果,CNNと画像再投影は,認識システムの精度向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-10-20T09:46:23Z) - Very Low-Resolution Iris Recognition Via Eigen-Patch Super-Resolution
and Matcher Fusion [69.53542497693086]
局所像パッチの固有変換に基づいて虹彩画像の再構成に用いる超解像アルゴリズムの評価を行った。
コントラストの強化は再現性を向上させるのに用いられ、マーカ融合は虹彩認識性能を改善するために採用されている。
論文 参考訳(メタデータ) (2022-10-18T11:25:19Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
本稿では, ホログラフィ変換を用いた画像検索手法を提案する。
また,ラベル付け手順を必要としないコントラスト学習によって誘導されるDNNのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-21T17:27:07Z) - Towards Unpaired Depth Enhancement and Super-Resolution in the Wild [121.96527719530305]
最先端のデータ駆動による深度マップの超解像法は、同じシーンの低解像度と高解像度の深度マップの登録ペアに依存している。
未経験データからの学習に基づく深度マップの強化について考察する。
論文 参考訳(メタデータ) (2021-05-25T16:19:16Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
ディープラーニング手法は、低解像度の入力から高解像度の出力へのエンドツーエンドのマッピングを学習するために、トレーニングデータに依存する。
本稿では,スパース事前を組み込んだマルチモーダル深層学習設計を提案し,他の画像モダリティからの情報をネットワークアーキテクチャに効果的に統合する。
提案手法は,サイド情報を用いた畳み込みスパース符号化の反復的アルゴリズムに類似した,新しい展開演算子に依存している。
論文 参考訳(メタデータ) (2020-01-21T14:41:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。