論文の概要: GPV-Pose: Category-level Object Pose Estimation via Geometry-guided
Point-wise Voting
- arxiv url: http://arxiv.org/abs/2203.07918v1
- Date: Tue, 15 Mar 2022 13:58:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-16 15:51:19.157679
- Title: GPV-Pose: Category-level Object Pose Estimation via Geometry-guided
Point-wise Voting
- Title(参考訳): GPV-Pose:幾何誘導ポイントワイド投票によるカテゴリーレベルのオブジェクトポーズ推定
- Authors: Yan Di, Ruida Zhang, Zhiqiang Lou, Fabian Manhardt, Xiangyang Ji,
Nassir Navab and Federico Tombari
- Abstract要約: GPV-Poseはロバストなカテゴリーレベルのポーズ推定のための新しいフレームワークである。
幾何学的洞察を利用して、カテゴリーレベルのポーズ感応的特徴の学習を強化する。
一般的な公開ベンチマークにおいて、最先端の競合相手に優れた結果をもたらす。
- 参考スコア(独自算出の注目度): 103.74918834553249
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While 6D object pose estimation has recently made a huge leap forward, most
methods can still only handle a single or a handful of different objects, which
limits their applications. To circumvent this problem, category-level object
pose estimation has recently been revamped, which aims at predicting the 6D
pose as well as the 3D metric size for previously unseen instances from a given
set of object classes. This is, however, a much more challenging task due to
severe intra-class shape variations. To address this issue, we propose
GPV-Pose, a novel framework for robust category-level pose estimation,
harnessing geometric insights to enhance the learning of category-level
pose-sensitive features. First, we introduce a decoupled confidence-driven
rotation representation, which allows geometry-aware recovery of the associated
rotation matrix. Second, we propose a novel geometry-guided point-wise voting
paradigm for robust retrieval of the 3D object bounding box. Finally,
leveraging these different output streams, we can enforce several geometric
consistency terms, further increasing performance, especially for non-symmetric
categories. GPV-Pose produces superior results to state-of-the-art competitors
on common public benchmarks, whilst almost achieving real-time inference speed
at 20 FPS.
- Abstract(参考訳): 6Dオブジェクトのポーズ推定は最近飛躍的な進歩を遂げましたが、ほとんどのメソッドは1つまたは少数の異なるオブジェクトしか扱えず、アプリケーションを制限することができます。
この問題を回避するため、最近、カテゴリレベルのオブジェクトのポーズ推定が改訂され、6Dのポーズを予測し、与えられたオブジェクトクラスから未確認のインスタンスの3Dメトリックサイズを予測することが目的である。
しかし、クラス内形状の変化が激しいため、これははるかに難しい作業である。
この問題に対処するため,我々は,幾何学的洞察を活かした,ロバストなカテゴリレベルのポーズ推定のための新しいフレームワークであるgpv-poseを提案する。
まず,共役信頼度駆動回転表現を導入し,関連する回転行列の幾何認識による復元を可能にする。
第2に,3次元オブジェクトバウンディングボックスのロバスト検索のための,新しい幾何誘導型ポイントワイズ投票パラダイムを提案する。
最後に、これらの異なる出力ストリームを活用することで、幾何的整合項をいくつか適用し、特に非対称なカテゴリのパフォーマンスをさらに向上させることができる。
GPV-Poseは、20FPSのリアルタイム推論速度をほぼ達成しながら、一般的な公開ベンチマークにおいて最先端の競合製品よりも優れた結果をもたらす。
関連論文リスト
- UNOPose: Unseen Object Pose Estimation with an Unposed RGB-D Reference Image [86.7128543480229]
単参照型オブジェクトポーズ推定のための新しいアプローチとベンチマークをUNOPoseと呼ぶ。
粗大なパラダイムに基づいて、UNOPoseはSE(3)不変の参照フレームを構築し、オブジェクト表現を標準化する。
重なり合う領域内に存在すると予測される確率に基づいて、各対応の重みを補正する。
論文 参考訳(メタデータ) (2024-11-25T05:36:00Z) - GS-Pose: Category-Level Object Pose Estimation via Geometric and
Semantic Correspondence [5.500735640045456]
カテゴリーレベルのポーズ推定は、コンピュータビジョンやロボット工学における多くの潜在的な応用において難しい課題である。
本稿では,事前学習した基礎モデルから得られる幾何学的特徴と意味的特徴の両方を活用することを提案する。
これは、セマンティックな特徴がオブジェクトのテクスチャや外観に対して堅牢であるため、以前のメソッドよりもトレーニングするデータを大幅に少なくする。
論文 参考訳(メタデータ) (2023-11-23T02:35:38Z) - SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation [79.12683101131368]
カテゴリーレベルのオブジェクトのポーズ推定は、既知のカテゴリから6次元のポーズと3次元の大きさを予測することを目的としている。
我々は、DINOv2のセマンティックカテゴリにオブジェクト固有の幾何学的特徴を統合する新しいアプローチであるSecondPoseを提案する。
論文 参考訳(メタデータ) (2023-11-18T17:14:07Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
本稿では,1枚のRGB-D画像からカテゴリレベルのオブジェクト形状とポーズ推定を行う新しいフレームワークを提案する。
カテゴリ内変動に対処するために、様々な形状を統一された潜在空間にエンコードするセマンティックプリミティブ表現を採用する。
提案手法は,実世界のデータセットにおいて,SOTAのポーズ推定性能とより優れた一般化を実現する。
論文 参考訳(メタデータ) (2022-10-03T17:51:54Z) - RBP-Pose: Residual Bounding Box Projection for Category-Level Pose
Estimation [103.74918834553247]
カテゴリーレベルのオブジェクトポーズ推定は、既知のカテゴリの集合からの任意のオブジェクトの3次元メートル法サイズだけでなく、6次元のポーズを予測することを目的としている。
近年の手法では, 観測された点雲を標準空間にマッピングし, 梅山アルゴリズムを用いてポーズとサイズを復元する手法が提案されている。
本稿では,オブジェクトのポーズと残差ベクトルを共同で予測する,幾何学誘導型残差オブジェクト境界ボックス投影ネットワーク RBP-Pose を提案する。
論文 参考訳(メタデータ) (2022-07-30T14:45:20Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
既知の3DオブジェクトのセットとRGBまたはRGB-Dの入力画像から、各オブジェクトの6Dポーズを検出して推定する。
我々のアプローチは、ポーズと対応を緊密に結合した方法で反復的に洗練し、アウトレーヤを動的に除去して精度を向上させる。
論文 参考訳(メタデータ) (2022-04-26T18:00:08Z) - Single-stage Keypoint-based Category-level Object Pose Estimation from
an RGB Image [27.234658117816103]
カテゴリレベルのオブジェクトポーズ推定のための,単一段階のキーポイントに基づくアプローチを提案する。
提案ネットワークは2次元オブジェクト検出を行い、2次元キーポイントを検出し、6-DoFのポーズを推定し、相対的に有界な立方体次元を回帰する。
我々は,3次元IoU測定値における最先端の手法よりも優れた,挑戦的なObjectronベンチマークに関する広範囲な実験を行った。
論文 参考訳(メタデータ) (2021-09-13T17:55:00Z) - CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects
from Point Clouds [97.63549045541296]
新規なリジッドオブジェクトインスタンスに対する9DoFポーズトラッキングと,関節付きオブジェクトに対するパート毎ポーズトラッキングを処理可能な統一フレームワークを提案する。
本手法は、高速なFPS 12で、カテゴリレベルのリジッドオブジェクトポーズ(NOCS-REAL275)と関節オブジェクトポーズベンチマーク(SAPIEN、BMVC)の最新のパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-04-08T00:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。