論文の概要: Amortised inference of fractional Brownian motion with linear
computational complexity
- arxiv url: http://arxiv.org/abs/2203.07961v1
- Date: Tue, 15 Mar 2022 14:43:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-16 16:48:47.885405
- Title: Amortised inference of fractional Brownian motion with linear
computational complexity
- Title(参考訳): 線形計算複雑性をもつ分数ブラウン運動の償却推論
- Authors: Fran\c{c}ois Laurent, Christian Vestergaard, Jean-Baptiste Masson,
Alhassan Cass\'e, Hippolyte Verdier
- Abstract要約: ランダムウォークのパラメータを推定するために,シミュレーションベースで償却されたベイズ推定手法を提案する。
提案手法は歩行パラメータの後方分布を確率自由な方法で学習する。
この手法を適用して、環境中の有限デコリレーション時間をさらに個々の軌道から推定できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a simulation-based, amortised Bayesian inference scheme to infer
the parameters of random walks. Our approach learns the posterior distribution
of the walks' parameters with a likelihood-free method. In the first step a
graph neural network is trained on simulated data to learn optimized
low-dimensional summary statistics of the random walk. In the second step an
invertible neural network generates the posterior distribution of the
parameters from the learnt summary statistics using variational inference. We
apply our method to infer the parameters of the fractional Brownian motion
model from single trajectories. The computational complexity of the amortized
inference procedure scales linearly with trajectory length, and its precision
scales similarly to the Cram{\'e}r-Rao bound over a wide range of lengths. The
approach is robust to positional noise, and generalizes well to trajectories
longer than those seen during training. Finally, we adapt this scheme to show
that a finite decorrelation time in the environment can furthermore be inferred
from individual trajectories.
- Abstract(参考訳): 本稿では,ランダムウォークのパラメータを推定するためのシミュレーションに基づくモーメントベイズ推論スキームを提案する。
提案手法は歩行パラメータの後方分布を確率自由な方法で学習する。
最初のステップでは、グラフニューラルネットワークがシミュレーションデータに基づいてトレーニングされ、ランダムウォークの最適化された低次元要約統計を学習する。
第2のステップでは、可逆ニューラルネットワークが変動推論を用いて学習要約統計からパラメータの後方分布を生成する。
単一軌道からの分数的ブラウン運動モデルのパラメータを推定するために本手法を適用した。
償却推論手順の計算複雑性は、軌道長と線形にスケールし、その精度は、幅広い長さにわたって有界なCram{\'e}r-Raoと類似している。
アプローチは位置雑音に対して堅牢であり、訓練中に見られるものよりも長い軌道によく一般化する。
最後に、このスキームを適用して、環境内の有限な相関時間はさらに個々の軌道から推測できることを示す。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Deep Horseshoe Gaussian Processes [1.0742675209112622]
直交指数核を持つディープ・ガウス過程に基づく新しい単純前処理であるディープ・ホースシュー・ガウス過程(Deep Horseshoe Gaussian process)を紹介する。
本研究は、2次損失から対数係数まで、未知の真の回帰曲線を最適に復元することを示す。
論文 参考訳(メタデータ) (2024-03-04T05:30:43Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
線形化されたラプラス近似に下界を導入する。
これらの境界は漸進的な最適化が可能であり、推定精度と計算複雑性とのトレードオフを可能にする。
論文 参考訳(メタデータ) (2023-06-06T19:02:57Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics [0.9176056742068814]
逆問題の文脈における後部分布の補正近似を改善するための反復的枠組みを提案する。
そこで我々は,本手法をスタイリング問題に適用して制御条件で検証し,改良された後部近似を各繰り返しで観察する。
論文 参考訳(メタデータ) (2023-05-15T15:47:19Z) - On the Dynamics of Inference and Learning [0.0]
本稿では,このベイズ更新過程を連続力学系として扱う。
クラムラーラオ境界が飽和すると、学習率は単純な1/T$パワーローによって制御されることを示す。
論文 参考訳(メタデータ) (2022-04-19T18:04:36Z) - Fast and Robust Online Inference with Stochastic Gradient Descent via
Random Scaling [0.9806910643086042]
本稿では,勾配降下アルゴリズムの平均化法により推定されるパラメータのベクトルに対するオンライン推論法を提案する。
我々のアプローチはオンラインデータで完全に運用されており、機能中心極限定理によって厳格に支えられている。
論文 参考訳(メタデータ) (2021-06-06T15:38:37Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
二進的アクティベーションや二進的重みを持つニューラルネットワークでは、勾配降下によるトレーニングは複雑である。
そこで本研究では,サンプリングと解析近似を併用した新しい推定法を提案する。
勾配推定において高い精度を示し、深部畳み込みモデルにおいてより安定かつ優れた訓練を行うことを示す。
論文 参考訳(メタデータ) (2020-06-04T21:51:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。