論文の概要: Multilingual Pre-training with Language and Task Adaptation for
Multilingual Text Style Transfer
- arxiv url: http://arxiv.org/abs/2203.08552v1
- Date: Wed, 16 Mar 2022 11:27:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-17 14:54:04.966047
- Title: Multilingual Pre-training with Language and Task Adaptation for
Multilingual Text Style Transfer
- Title(参考訳): 多言語テキストスタイル転送のための言語とタスク適応を用いた多言語事前学習
- Authors: Huiyuan Lai, Antonio Toral, Malvina Nissim
- Abstract要約: 事前学習したSeq2seqモデルmBARTを多言語テキストスタイルの転送に活用する。
機械翻訳データとゴールドアライメントの英語文を使えば、最先端の結果が得られる。
- 参考スコア(独自算出の注目度): 14.799109368073548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We exploit the pre-trained seq2seq model mBART for multilingual text style
transfer. Using machine translated data as well as gold aligned English
sentences yields state-of-the-art results in the three target languages we
consider. Besides, in view of the general scarcity of parallel data, we propose
a modular approach for multilingual formality transfer, which consists of two
training strategies that target adaptation to both language and task. Our
approach achieves competitive performance without monolingual task-specific
parallel data and can be applied to other style transfer tasks as well as to
other languages.
- Abstract(参考訳): 事前学習したSeq2seqモデルmBARTを多言語テキストスタイルの転送に活用する。
機械翻訳データとゴールドアライメント英語文を用いることで、私たちが検討している3つのターゲット言語で最新の結果が得られる。
さらに,並列データの汎用的不足を考慮し,言語とタスクへの適応を目標とした2つのトレーニング戦略からなる多言語形式移動のためのモジュラー手法を提案する。
提案手法は単言語タスク固有の並列データを必要としない競合性能を実現し,他の言語にも適用可能である。
関連論文リスト
- Zero-shot Cross-lingual Transfer without Parallel Corpus [6.937772043639308]
本稿では,事前学習モデルを用いてゼロショット言語間移動を行う手法を提案する。
タスク関連のバイリンガル情報アライメントを適用するバイリンガルタスクフィッティングモジュールで構成されている。
自己学習モジュールは、ラベルのないデータに対して擬似ソフトおよびハードラベルを生成し、それを利用して自己学習を行う。
論文 参考訳(メタデータ) (2023-10-07T07:54:22Z) - Enhancing Cross-lingual Transfer via Phonemic Transcription Integration [57.109031654219294]
PhoneXLは、音素転写を言語間移動のための追加のモダリティとして組み込んだフレームワークである。
本研究は, 音素転写が, 言語間移動を促進するために, 正書法以外の重要な情報を提供することを示すものである。
論文 参考訳(メタデータ) (2023-07-10T06:17:33Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Advancing Multilingual Pre-training: TRIP Triangular Document-level
Pre-training for Multilingual Language Models [107.83158521848372]
我々は,従来のモノリンガルおよびバイリンガルの目的を,グラフト法と呼ばれる新しい手法で三言語的目的に加速する分野において,最初のテキストbfTriangular Document-level textbfPre-training(textbfTRIP)を提案する。
TRIPは、3つの多言語文書レベルの機械翻訳ベンチマークと1つの言語間抽象的な要約ベンチマークで、最大3.11d-BLEU点と8.9ROUGE-L点の一貫性のある改善を含む、強力なSOTAスコアを達成している。
論文 参考訳(メタデータ) (2022-12-15T12:14:25Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - Translate & Fill: Improving Zero-Shot Multilingual Semantic Parsing with
Synthetic Data [2.225882303328135]
多言語セマンティックパーシングタスクのための銀のトレーニングデータを生成するための新しいTranslate-and-Fill(TaF)手法を提案する。
3つの多言語意味解析データセットの実験結果は、TaFによるデータ拡張が類似システムと競合する精度に達することを示している。
論文 参考訳(メタデータ) (2021-09-09T14:51:11Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。