論文の概要: New directions for surrogate models and differentiable programming for
High Energy Physics detector simulation
- arxiv url: http://arxiv.org/abs/2203.08806v1
- Date: Tue, 15 Mar 2022 19:42:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-18 16:04:41.684834
- Title: New directions for surrogate models and differentiable programming for
High Energy Physics detector simulation
- Title(参考訳): 高エネルギー物理検出器シミュレーションのための代理モデルと微分可能プログラムの新しい方向
- Authors: Andreas Adelmann, Walter Hopkins, Evangelos Kourlitis, Michael Kagan,
Gregor Kasieczka, Claudius Krause, David Shih, Vinicius Mikuni, Benjamin
Nachman, Kevin Pedro, Daniel Winklehner
- Abstract要約: 機械学習手法を用いたサロゲートモデルに関する新しいアイデアは、計算コストの高いコンポーネントを置き換えるために検討されている。
微分可能プログラミングは、制御可能でスケーラブルなシミュレーションルーチンを提供する補完的なアプローチとして提案されている。
- 参考スコア(独自算出の注目度): 3.5632694641911673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The computational cost for high energy physics detector simulation in future
experimental facilities is going to exceed the current available resources. To
overcome this challenge, new ideas on surrogate models using machine learning
methods are being explored to replace computationally expensive components.
Additionally, differentiable programming has been proposed as a complementary
approach, providing controllable and scalable simulation routines. In this
document, new and ongoing efforts for surrogate models and differential
programming applied to detector simulation are discussed in the context of the
2021 Particle Physics Community Planning Exercise (`Snowmass').
- Abstract(参考訳): 将来の実験施設における高エネルギー物理検出器シミュレーションの計算コストは、現在利用可能な資源を超えるだろう。
この課題を克服するために、機械学習手法を用いたサロゲートモデルに関する新しいアイデアが、計算コストの高いコンポーネントを置き換えるために検討されている。
さらに、微分可能プログラミングは、制御可能でスケーラブルなシミュレーションルーチンを提供する補完的なアプローチとして提案されている。
本論文では,2021年の素粒子物理学コミュニティ計画演習(snowmass)の文脈において,サロゲートモデルと検出器シミュレーションに適用する微分計画の新しいかつ継続的な取り組みについて論じる。
関連論文リスト
- Deep Generative Models for Detector Signature Simulation: A Taxonomic Review [0.0]
粒子物理学検出器からの信号は衝突の物理を符号化する低レベル物体(エネルギー沈降や軌道など)である。
検出器におけるそれらの完全なシミュレーションは、計算と記憶集約的なタスクである。
我々は,検出器シグネチャのシミュレーションについて,既存の文献の包括的かつ徹底的な分類学的レビューを行う。
論文 参考訳(メタデータ) (2023-12-15T08:27:39Z) - Enhancing Polynomial Chaos Expansion Based Surrogate Modeling using a
Novel Probabilistic Transfer Learning Strategy [2.980666177064344]
ブラックボックスシミュレーションでは、非侵入型PCEは一連のシミュレーション応答評価を用いてサロゲートを構築することができる。
そこで我々は,類似のPCEサロゲート構築タスクを通じて得られた知識を新たなサロゲート構築タスクに転送することで,伝達学習を活用することを提案する。
論文 参考訳(メタデータ) (2023-12-07T19:16:42Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
シミュレーションを利用して様々な物理システムやプロセスを調べる研究者を支援する機械学習ベースのデータジェネレータフレームワークを提案する。
まず、シミュレーション結果を予測するために、限られたシミュレートされたデータセットを使用して教師付き予測モデルをトレーニングする。
その後、強化学習エージェントを訓練し、教師付きモデルを利用して正確なシミュレーションライクなデータを生成する。
論文 参考訳(メタデータ) (2023-05-16T17:31:50Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
本稿では,抽出可能な確率を伴わない計算モデルを選択する実験設計手法BOSMOSを提案する。
シミュレーション実験では,提案手法により,既存のLFI手法に比べて最大2桁の精度でモデルを選択することができることを示した。
論文 参考訳(メタデータ) (2023-03-03T21:41:01Z) - Magnetohydrodynamics with Physics Informed Neural Operators [2.588973722689844]
本稿では,AIを用いて複雑なシステムのモデリングを,計算コストのごく一部で高速化する方法について検討する。
本稿では,2次元非圧縮性磁気流体力学シミュレーションのモデル化のための物理情報演算子の最初の応用について述べる。
論文 参考訳(メタデータ) (2023-02-13T19:00:00Z) - Evaluating generative models in high energy physics [7.545095780512178]
生成モデルの故障モードに対する評価指標とその感度に関する最初の体系的レビューと調査を行う。
我々はFr'echetとカーネル物理距離(FPDとKPD)の2つの新しい指標を提案し、その性能を計測する様々な実験を行った。
提案手法の有効性を検証し, 新規な注目型生成逆数粒子変換器と, 最先端のメッセージ通過型生成逆数ネットワークジェットシミュレーションモデルとの比較を行った。
論文 参考訳(メタデータ) (2022-11-18T15:36:28Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
本調査は,モデリングとシミュレーションの分野における最近のトレンドを包括的に概観することを目的としている。
まずは、シミュレーターを実装するフレームワークの開発の背後にあるモチベーションから始めます。
我々は,既存のシミュレータの機能,近似,産業的有効性に基づいて,新しい一貫した一貫した分類を行う。
論文 参考訳(メタデータ) (2022-06-22T19:33:21Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。