Verification of colorable hypergraph states with stabilizer test
- URL: http://arxiv.org/abs/2203.09989v2
- Date: Sun, 29 May 2022 05:19:15 GMT
- Title: Verification of colorable hypergraph states with stabilizer test
- Authors: Hong Tao, and Xiaoqian Zhang, and Lei Shao, and Xiaoqing Tan
- Abstract summary: We propose a novel fault-tolerant solution for verification of colorable hypergraph states by using stabilizer test.
As to appliance, it will be also applied to blind quantum computing.
- Score: 5.557807668387859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many-body quantum states, as a matter of fact, are extremely essential to
solve certain mathematical problems or simulate quantum systems in
measurement-based quantum computation. However, how to verify large scale
quantum states, such as hypergraph states, is an exceedingly hard task for
multi-body quantum systems. Here, we propose a novel fault-tolerant solution
for verification of colorable hypergraph states by using stabilizer test.
Compared with the adaptive stabilizer test, our protocol is dramatically
facilitating by making only Pauli-X and Pauli-Z measurement. As to appliance,
it will be also applied to blind quantum computing.
Related papers
- Rapidly Achieving Chemical Accuracy with Quantum Computing Enforced Language Model [22.163742052849432]
QiankunNet-VQE is a transformer based language models enforced with quantum computing to learn and generate quantum states.
It has been implemented using up to 12 qubits and attaining an accuracy level competitive with state-of-the-art classical methods.
arXiv Detail & Related papers (2024-05-15T07:50:57Z) - A universal scheme to self-test any quantum state and extremal measurement [41.94295877935867]
quantum network considered in this work is the simple star network, which is implementable using current technologies.
For our purposes, we also construct a scheme that can be used to self-test the two-dimensional tomographically complete set of measurements with an arbitrary number of parties.
arXiv Detail & Related papers (2023-12-07T16:20:28Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
The presence of noise in quantum computers hinders their effective operation.
We suggest the application of the so-called quantum state matching protocol for testing purposes.
For systematically varied inputs we find that the device with the smaller quantum volume performs better on our tests than the one with larger quantum volume.
arXiv Detail & Related papers (2022-10-18T08:25:34Z) - Swap Test-based Characterization of Quantum Processes in Universal
Quantum Computers [0.0]
Unreliable quantum processes in universal quantum computers still represent one of the the greatest challenges to be overcome.
In this article we verify whether a tool called Swap Test is able to identify decoherence to a quantum system.
arXiv Detail & Related papers (2022-08-04T21:31:49Z) - Scalable measures of magic resource for quantum computers [0.0]
We introduce efficient measures of magic resource for pure quantum states with a sampling cost independent of the number of qubits.
We show the transition of classically simulable stabilizer states into intractable quantum states on the IonQ quantum computer.
arXiv Detail & Related papers (2022-04-21T12:50:47Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Experimental SWAP test of infinite dimensional quantum states [0.0]
SWAP test measures the overlap of two motional states in a system of trapped $171mathrmYb+$ ions.
We report the overlap measurement of a variety of quantum states: Fock states, coherent states, squeezed vacuum states, and cat states.
arXiv Detail & Related papers (2021-03-18T12:43:12Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.