論文の概要: The Sandbox Environment for Generalizable Agent Research (SEGAR)
- arxiv url: http://arxiv.org/abs/2203.10351v2
- Date: Thu, 26 Sep 2024 18:19:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 15:46:48.568032
- Title: The Sandbox Environment for Generalizable Agent Research (SEGAR)
- Title(参考訳): 汎用エージェント研究のためのサンドボックス環境
- Authors: R Devon Hjelm, Bogdan Mazoure, Florian Golemo, Samira Ebrahimi Kahou, Pedro Braga, Felipe Frujeri, Mihai Jalobeanu, Andrey Kolobov,
- Abstract要約: 汎用エージェントリサーチ(SEGAR)のためのサンドボックス環境の構築
SEGARは対話型環境における一般化研究の容易性と説明責任を向上させる。
本稿では、SEGARの概要と、SEGARがこれらの目標にどのように貢献するか、および、SEGARが答えられるいくつかの研究課題を実証する実験を紹介する。
- 参考スコア(独自算出の注目度): 19.477299418432032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A broad challenge of research on generalization for sequential decision-making tasks in interactive environments is designing benchmarks that clearly landmark progress. While there has been notable headway, current benchmarks either do not provide suitable exposure nor intuitive control of the underlying factors, are not easy-to-implement, customizable, or extensible, or are computationally expensive to run. We built the Sandbox Environment for Generalizable Agent Research (SEGAR) with all of these things in mind. SEGAR improves the ease and accountability of generalization research in RL, as generalization objectives can be easy designed by specifying task distributions, which in turns allows the researcher to measure the nature of the generalization objective. We present an overview of SEGAR and how it contributes to these goals, as well as experiments that demonstrate a few types of research questions SEGAR can help answer.
- Abstract(参考訳): 対話型環境における逐次意思決定タスクの一般化に関する研究の課題は、明らかに進歩を示すベンチマークを設計することである。
目立った道のりはあったが、現在のベンチマークでは、適切な露出や根底にある要因の直感的な制御を提供しておらず、簡単に実装でき、カスタマイズ可能で、拡張可能でもなく、計算に費用がかかる。
汎用エージェント研究のためのサンドボックス環境(SEGAR)を構築した。
SEGARは、一般化目的をタスク分布を指定することで容易に設計できるので、RLにおける一般化研究の容易さと説明責任を向上させる。
本稿では、SEGARの概要と、SEGARがこれらの目標にどのように貢献するか、および、SEGARが答えられるいくつかの研究課題を実証する実験を紹介する。
関連論文リスト
- DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents [49.74065769505137]
本研究では,新しい科学的発見の完全なサイクルを実行するエージェントの能力を開発し,ベンチマークする最初の仮想環境であるDiscoVERYWORLDを紹介する。
8つのトピックにまたがる120の異なる課題タスクが含まれており、3レベルの難易度といくつかのパラメトリックなバリエーションがある。
従来の環境においてよく機能する強力なベースラインエージェントが、ほとんどのdiscoVERYWORLDタスクに苦労していることがわかった。
論文 参考訳(メタデータ) (2024-06-10T20:08:44Z) - A Minimalist Prompt for Zero-Shot Policy Learning [61.65128628634916]
トランスフォーマーに基づく手法は、推論中にターゲットドメインのデモや例解を誘導するときに、かなりの一般化能力を示す。
本稿では,タスクパラメータのみに決定変換器を条件付けすることで,実演条件と同等以上のゼロショット一般化を実現できることを示す。
我々は、ロボット制御、操作、ナビゲーションベンチマークタスクの範囲で、ゼロショットの一般化をさらに促進するために、さらに学習可能なプロンプトを導入する。
論文 参考訳(メタデータ) (2024-05-09T19:15:33Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
本稿では,オープン環境におけるオブジェクト検出器の総合的なレビューと解析を行う。
データ/ターゲットの変化の次元に基づいて、4つの四分法(ドメイン外、カテゴリ外、堅牢な学習、漸進的な学習)を含むフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-24T19:32:39Z) - The Shifted and The Overlooked: A Task-oriented Investigation of
User-GPT Interactions [114.67699010359637]
実際のユーザクエリの大規模なコレクションをGPTに解析する。
ユーザインタラクションでは'設計'や'計画'といったタスクが一般的だが,従来のNLPベンチマークとは大きく異なる。
論文 参考訳(メタデータ) (2023-10-19T02:12:17Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - Generalizing to New Tasks via One-Shot Compositional Subgoals [23.15624959305799]
以前は見つからなかったタスクをほとんど、あるいはまったく監督せずに一般化する能力は、現代の機械学習研究において重要な課題である。
適応型「近未来」サブゴールを用いて、模倣学習エージェントを訓練することにより、これらの問題に対処しようとするCASEを導入する。
実験の結果,提案手法は従来よりも30%向上していることがわかった。
論文 参考訳(メタデータ) (2022-05-16T14:30:11Z) - Open-Ended Learning Leads to Generally Capable Agents [12.079718607356178]
環境領域内のタスクの宇宙を定義し、この広大な空間をまたいだエージェントを訓練する能力を示す。
結果として生じる空間は、エージェントがもたらす課題に関して非常に多様であり、エージェントの学習の進捗を測定することさえも、オープンな研究課題である。
オープンエンド学習プロセスの構築により,エージェントが学習を止めないようなトレーニングタスク分布や訓練目標を動的に変化させることで,新しい行動の一貫性のある学習が可能になることを示す。
論文 参考訳(メタデータ) (2021-07-27T13:30:07Z) - CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning [138.40338621974954]
CausalWorldは、ロボット操作環境における因果構造と伝達学習のベンチマークである。
タスクは、ブロックのセットから3D形状を構築することで構成される。
論文 参考訳(メタデータ) (2020-10-08T23:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。