論文の概要: Efficient and Generalizable Environmental Understanding for Visual Navigation
- arxiv url: http://arxiv.org/abs/2506.15377v1
- Date: Wed, 18 Jun 2025 11:47:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.645782
- Title: Efficient and Generalizable Environmental Understanding for Visual Navigation
- Title(参考訳): 視覚ナビゲーションのための効率的で汎用的な環境理解
- Authors: Ruoyu Wang, Xinshu Li, Chen Wang, Lina Yao,
- Abstract要約: ビジュアルナビゲーションは、エージェントが与えられた目的に向かって複雑な環境をナビゲートできるようにする、Embodied AIの中核的なタスクである。
エージェントの環境理解能力を高めるために因果理解モジュールを組み込んだ因果認識ナビゲーション(CAN)を提案する。
- 参考スコア(独自算出の注目度): 14.10058573339022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual Navigation is a core task in Embodied AI, enabling agents to navigate complex environments toward given objectives. Across diverse settings within Navigation tasks, many necessitate the modelling of sequential data accumulated from preceding time steps. While existing methods perform well, they typically process all historical observations simultaneously, overlooking the internal association structure within the data, which may limit the potential for further improvements in task performance. We address this by examining the unique characteristics of Navigation tasks through the lens of causality, introducing a causal framework to highlight the limitations of conventional sequential methods. Leveraging this insight, we propose Causality-Aware Navigation (CAN), which incorporates a Causal Understanding Module to enhance the agent's environmental understanding capability. Empirical evaluations show that our approach consistently outperforms baselines across various tasks and simulation environments. Extensive ablations studies attribute these gains to the Causal Understanding Module, which generalizes effectively in both Reinforcement and Supervised Learning settings without computational overhead.
- Abstract(参考訳): ビジュアルナビゲーションは、エージェントが与えられた目的に向かって複雑な環境をナビゲートできるようにする、Embodied AIの中核的なタスクである。
ナビゲーションタスク内のさまざまな設定にまたがって、多くの場合、前のタイムステップから蓄積されたシーケンシャルなデータのモデリングを必要とします。
既存の手法はよく機能するが、典型的にはすべての歴史的観測を同時に処理し、データの内部構造を見渡すことで、タスク性能のさらなる改善の可能性を制限することができる。
本稿では、因果関係のレンズを通してナビゲーションタスクのユニークな特徴を調べ、従来の逐次手法の限界を強調するための因果的枠組みを導入することにより、この問題に対処する。
この知見を活用することで、エージェントの環境理解能力を高めるために、因果理解モジュールを組み込んだ因果認識ナビゲーション(CAN)を提案する。
実験により,本手法は様々なタスクやシミュレーション環境におけるベースラインを一貫して上回ることを示した。
広範囲にわたるアブレーション研究は、これらの利点を因果理解モジュール(Causal Understanding Module)に起因している。
関連論文リスト
- Causality-Aware Transformer Networks for Robotic Navigation [13.719643934968367]
Visual Navigationの現在の研究は、改善の機会を明らかにしている。
RNNとTransformerの直接的な採用はしばしば、Embodied AIと従来のシーケンシャルなデータモデリングの具体的な違いを見落としている。
因果理解モジュールを特徴とするナビゲーション用因果認識変換器(CAT)ネットワークを提案する。
論文 参考訳(メタデータ) (2024-09-04T12:53:26Z) - Augmented Commonsense Knowledge for Remote Object Grounding [67.30864498454805]
エージェントナビゲーションを改善するための時間的知識グラフとして,コモンセンス情報を活用するための拡張コモンセンス知識モデル(ACK)を提案する。
ACKは知識グラフ対応のクロスモーダルとコンセプトアグリゲーションモジュールで構成され、視覚的表現と視覚的テキストデータアライメントを強化する。
我々は、より正確な局所的な行動予測につながるコモンセンスに基づく意思決定プロセスのための新しいパイプラインを追加します。
論文 参考訳(メタデータ) (2024-06-03T12:12:33Z) - TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation [11.591176410027224]
本稿では,Large Language Models(LLM)に基づく視覚言語ナビゲーション(VLN)エージェントを提案する。
環境認識におけるLLMの欠点を補うための思考・相互作用・行動の枠組みを提案する。
また,本手法は教師付き学習手法よりも優れ,ゼロショットナビゲーションの有効性を強調した。
論文 参考訳(メタデータ) (2024-03-13T05:22:39Z) - Active Sensing with Predictive Coding and Uncertainty Minimization [0.0]
2つの生物学的計算から着想を得たエンボディード探索のためのエンドツーエンドの手法を提案する。
まず,迷路ナビゲーションタスクによるアプローチを実演し,環境の遷移分布と空間的特徴を明らかにする。
本モデルでは,視覚シーンを効率的に分類するための探索によって,教師なし表現を構築する。
論文 参考訳(メタデータ) (2023-07-02T21:14:49Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
本稿では,言語埋め込みの高速適応を実現するために,プロンプトベースの学習を導入する。
我々のモデルは、VLNやREVERIEを含む多様な視覚言語ナビゲーションタスクに適応することができる。
論文 参考訳(メタデータ) (2022-03-08T11:01:24Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
マルチタスク学習は、共有学習アルゴリズムによって複数のタスクを共同で学習する方法論として登場した。
我々は異種mtlに対処し,検出,分類,回帰問題を同時に解決する。
大規模な顔分析のための最初のフレームワークであるFaceBehaviorNetを構築し、すべての顔行動タスクを共同で学習する。
論文 参考訳(メタデータ) (2021-05-08T22:26:52Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Dynamic Feature Integration for Simultaneous Detection of Salient
Object, Edge and Skeleton [108.01007935498104]
本稿では,高次物体分割,エッジ検出,スケルトン抽出など,低レベルの3つの視覚問題を解く。
まず、これらのタスクで共有される類似点を示し、統一されたフレームワークの開発にどのように活用できるかを示す。
論文 参考訳(メタデータ) (2020-04-18T11:10:11Z) - Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling [65.99956848461915]
VLN(Vision-and-Language Navigation)は、エージェントが目標を達成するために3D環境を移動する方法を決定するタスクである。
VLNタスクの問題点の1つは、対話型環境において、人間に注釈を付けた指示で十分なナビゲーションパスを収集することは困難であるため、データの不足である。
本稿では,低品質な拡張データではなく,効果的な条件を考慮可能な,対向駆動の反実的推論モデルを提案する。
論文 参考訳(メタデータ) (2019-11-17T18:02:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。