論文の概要: Divide-and-Conquer: Tree-structured Strategy with Answer Distribution Estimator for Goal-Oriented Visual Dialogue
- arxiv url: http://arxiv.org/abs/2502.05806v1
- Date: Sun, 09 Feb 2025 08:16:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:04.227037
- Title: Divide-and-Conquer: Tree-structured Strategy with Answer Distribution Estimator for Goal-Oriented Visual Dialogue
- Title(参考訳): ディバイド・アンド・コンカー:ゴール指向視覚対話のための解答分布推定器を用いた木構造戦略
- Authors: Shuo Cai, Xinzhe Han, Shuhui Wang,
- Abstract要約: Answer Distribution Estimator(TSADE)を用いた樹木構造戦略
本稿では,現在の候補オブジェクトの半数を各ラウンドで除外することで,質問生成をガイドする木構造戦略(TSADE)を提案する。
提案手法は,従来のエルゴディックな質問生成手法と比較して,繰り返し質問やラウンドの少ないタスク指向の精度をエージェントが達成できることを実験的に実証する。
- 参考スコア(独自算出の注目度): 30.126882554391837
- License:
- Abstract: Goal-oriented visual dialogue involves multi-round interaction between artificial agents, which has been of remarkable attention due to its wide applications. Given a visual scene, this task occurs when a Questioner asks an action-oriented question and an Answerer responds with the intent of letting the Questioner know the correct action to take. The quality of questions affects the accuracy and efficiency of the target search progress. However, existing methods lack a clear strategy to guide the generation of questions, resulting in the randomness in the search process and inconvergent results. We propose a Tree-Structured Strategy with Answer Distribution Estimator (TSADE) which guides the question generation by excluding half of the current candidate objects in each round. The above process is implemented by maximizing a binary reward inspired by the ``divide-and-conquer'' paradigm. We further design a candidate-minimization reward which encourages the model to narrow down the scope of candidate objects toward the end of the dialogue. We experimentally demonstrate that our method can enable the agents to achieve high task-oriented accuracy with fewer repeating questions and rounds compared to traditional ergodic question generation approaches. Qualitative results further show that TSADE facilitates agents to generate higher-quality questions.
- Abstract(参考訳): 目標指向の視覚対話には、その広範囲な応用により注目されている人工エージェント間の多ラウンドインタラクションが含まれる。
視覚的なシーンが与えられた場合、質問者がアクション指向の質問をし、回答者は質問者に正しいアクションを知らせる意図で応答する。
質問の質は、対象探索の精度と効率に影響を与える。
しかし,既存の手法では質問の生成を導く明確な戦略が欠如しており,その結果,探索プロセスのランダム性や不収束性が生じる。
本稿では,現在の候補オブジェクトの半数を各ラウンドで除外することで,質問生成をガイドする木構造戦略(TSADE)を提案する。
このプロセスは `divide-and-conquer'' パラダイムにインスパイアされたバイナリ報酬を最大化する。
さらに、モデルが対話の終端に向けて候補オブジェクトの範囲を狭めるよう促す候補最小化報酬を設計する。
提案手法は,従来のエルゴディックな質問生成手法と比較して,繰り返し質問やラウンドの少ないタスク指向の精度をエージェントが達成できることを実験的に実証する。
質的な結果はさらに、TSADEはエージェントが高品質な質問を作成できるように促していることを示している。
関連論文リスト
- EfficientEQA: An Efficient Approach for Open Vocabulary Embodied Question Answering [21.114403949257934]
EQA(Embodied Question Answering)は、ロボットホームアシスタントにとって不可欠な課題である。
近年の研究では、大規模視覚言語モデル(VLM)がEQAに有効に活用できることが示されているが、既存の研究はビデオベースの質問応答に焦点を当てているか、クローズドフォームの選択セットに依存している。
オープン語彙EQAのためのEfficientEQAと呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-26T19:48:47Z) - A Survey on Complex Tasks for Goal-Directed Interactive Agents [60.53915548970061]
この調査は、目標指向の対話エージェントを評価するための、関連するタスクと環境をコンパイルする。
関連リソースの最新のコンパイルは、プロジェクトのWebサイトにある。
論文 参考訳(メタデータ) (2024-09-27T08:17:53Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
木探索に基づく推論経路生成手法であるPathFinderを提案する。
動的デコードの統合により、多様な分岐とマルチホップ推論を強化する。
我々のモデルは、大きな分岐因子を持つビームサーチに類似した複雑さを反映して、よく、長く、目に見えない推論連鎖を一般化する。
論文 参考訳(メタデータ) (2023-12-08T17:05:47Z) - Clarify When Necessary: Resolving Ambiguity Through Interaction with LMs [58.620269228776294]
そこで本稿では,ユーザに対して,あいまいさを解消するためのタスク非依存のフレームワークを提案する。
我々は3つのNLPアプリケーション(質問応答、機械翻訳、自然言語推論)にまたがるシステムを評価する。
インテントシムは堅牢であり、幅広いNLPタスクやLMの改善を実証している。
論文 参考訳(メタデータ) (2023-11-16T00:18:50Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - Gotta: Generative Few-shot Question Answering by Prompt-based Cloze Data
Augmentation [18.531941086922256]
QA (Few-shot Question answering) は、コンテキストパスから一連の質問に対する回答を正確に発見することを目的としている。
我々は,ジェネレーティブPROmpTベースのdaTa拡張フレームワークであるGottaを開発した。
人間の推論プロセスにインスパイアされた我々は、クローズタスクを統合して、数発のQA学習を強化することを提案する。
論文 参考訳(メタデータ) (2023-06-07T01:44:43Z) - Reranking Overgenerated Responses for End-to-End Task-Oriented Dialogue
Systems [71.33737787564966]
エンド・ツー・エンド(E2E)タスク指向対話システム(ToD)は、いわゆる「いいね!
本稿では,システムによって当初過剰に生成された応答リストから高品質な項目を選択する方法を提案する。
本研究では,最先端のE2E ToDシステムを2.4BLEU,3.2ROUGE,2.8 METEORで改善し,新たなピーク値を得た。
論文 参考訳(メタデータ) (2022-11-07T15:59:49Z) - Decision-Theoretic Question Generation for Situated Reference
Resolution: An Empirical Study and Computational Model [11.543386846947554]
遠隔実験者と対話しながらツールセットを整理する仮想ロボットを参加者が操作する対話型研究から対話データを分析した。
あいまいさを解消するために用いられる質問型の分布や、参照分解過程における対話レベル要因の影響など、多くの新しい結果が得られた。
論文 参考訳(メタデータ) (2021-10-12T19:23:25Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Review-guided Helpful Answer Identification in E-commerce [38.276241153439955]
製品固有のコミュニティ質問応答プラットフォームは、潜在的な顧客の懸念に対処するのに大いに役立ちます。
このようなプラットフォーム上でユーザが提供する回答は、その品質に大きく違いがあります。
コミュニティからのヘルプフルネスの投票は、回答の全体的な品質を示すことができるが、しばしば欠落している。
論文 参考訳(メタデータ) (2020-03-13T11:34:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。