論文の概要: Who Shares Fake News? Uncovering Insights from Social Media Users' Post Histories
- arxiv url: http://arxiv.org/abs/2203.10560v3
- Date: Mon, 22 Jul 2024 16:46:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 06:25:22.877985
- Title: Who Shares Fake News? Uncovering Insights from Social Media Users' Post Histories
- Title(参考訳): 偽ニュースをシェアする人は? ソーシャルメディアユーザーのポスト履歴から洞察を得た
- Authors: Verena Schoenmueller, Simon J. Blanchard, Gita V. Johar,
- Abstract要約: 本稿では,ソーシャルメディア利用者の投稿履歴が,偽ニュース共有の研究にあまり使われていないことを提案する。
偽ニュースの共有者を識別し、最も偽ニュースを共有する可能性が最も高いものを予測し、介入を構築するための有望な構成物を特定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose that social-media users' own post histories are an underused yet valuable resource for studying fake-news sharing. By extracting textual cues from their prior posts, and contrasting their prevalence against random social-media users and others (e.g., those with similar socio-demographics, political news-sharers, and fact-check sharers), researchers can identify cues that distinguish fake-news sharers, predict those most likely to share fake news, and identify promising constructs to build interventions. Our research includes studies along these lines. In Study 1, we explore the distinctive language patterns of fake-news sharers, highlighting elements such as their higher use of anger and power-related words. In Study 2, we show that adding textual cues into predictive models enhances their accuracy in predicting fake-news sharers. In Study 3, we explore the contrasting role of trait and situational anger, and show trait anger is associated with a greater propensity to share both true and fake news. In Study 4, we introduce a way to authenticate Twitter accounts in surveys, before using it to explore how crafting an ad copy that resonates with users' sense of power encourages the adoption of fact-checking tools. We hope to encourage the use of novel research methods for marketers and misinformation researchers.
- Abstract(参考訳): ソーシャルメディア利用者の投稿履歴は、偽ニュース共有の研究にあまり使われていないが貴重な資料である。
テキストによる手がかりを以前の投稿から抽出し、ランダムなソーシャルメディアユーザー(例えば、類似の社会デデマグラフィー、政治ニュース共有者、ファクトチェック共有者)と対比することにより、研究者は偽ニュース共有者を識別し、偽ニュースを共有する可能性が最も高いものを予測し、介入を構築するための有望な構成物を特定することができる。
私たちの研究はこれらの線に沿った研究を含んでいる。
研究1では、偽ニュース共有者の言語パターンを探求し、怒りやパワー関連語の使用率の向上といった要素を強調した。
研究2では、予測モデルにテキストキューを追加することにより、偽ニュース共有者の予測精度が向上することを示した。
研究3では、特徴と状況的怒りの対照的な役割を探求し、特徴的怒りが真と偽の両方のニュースを共有することの正当性に結びついていることを示す。
調査4では,利用者の力覚に反応する広告コピーの作成方法を探る前に,Twitterアカウントを調査で認証する方法を導入し,ファクトチェックツールの採用を促した。
我々は、マーケターや誤情報研究者に新しい研究手法の活用を奨励したい。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - FakeNewsLab: Experimental Study on Biases and Pitfalls Preventing us
from Distinguishing True from False News [0.2741266294612776]
この研究は、偽ニュースデータセットを構築する際に、人間のアノテータに影響を与える一連の落とし穴を強調している。
また、ユーザーが再共有する前に記事全体を読むことを推奨する、AIの一般的な理論的根拠にも異議を唱えている。
論文 参考訳(メタデータ) (2021-10-22T12:02:16Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
我々は、44名のレイト参加者に、ニュース記事を含む投稿を含むソーシャルメディアフィードをさりげなく読み取らせるという、視線追跡研究を提示した。
第2回では,参加者に対して,これらの記事の真偽を判断するよう求めた。
また、同様のシナリオを用いたフォローアップ定性的な研究についても述べるが、今回は7人の専門家によるフェイクニュースアノテータを用いた。
論文 参考訳(メタデータ) (2021-09-26T08:11:17Z) - Profiling Fake News Spreaders on Social Media through Psychological and
Motivational Factors [26.942545715296983]
ソーシャルメディア上でのフェイクニューススプレッシャーの特徴と動機要因について検討した。
次に、フェイクニューススプレッドラーが他のユーザーと異なる特徴を示すことができるかどうかを判定する一連の実験を行う。
論文 参考訳(メタデータ) (2021-08-24T20:27:38Z) - Stance Detection with BERT Embeddings for Credibility Analysis of
Information on Social Media [1.7616042687330642]
本稿では,記事の内容とともに,その特徴の1つとして姿勢を用いた偽ニュースを検出するモデルを提案する。
本研究は,自動的特徴抽出とテキストの関連性でコンテンツを解釈する。
実世界のデータセットで行った実験は、我々のモデルが以前の研究より優れており、95.32%の精度で偽ニュースの検出を可能にすることを示している。
論文 参考訳(メタデータ) (2021-05-21T10:46:43Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。