Deep Learning-Based Multi-Object Tracking: A Comprehensive Survey from Foundations to State-of-the-Art
- URL: http://arxiv.org/abs/2506.13457v1
- Date: Mon, 16 Jun 2025 13:15:01 GMT
- Title: Deep Learning-Based Multi-Object Tracking: A Comprehensive Survey from Foundations to State-of-the-Art
- Authors: Momir Adžemović,
- Abstract summary: Multi-object tracking (MOT) is a core task in computer vision that involves detecting objects in frames and associating them across time.<n>Advances in deep learning-based methods accelerated in 2022 with the introduction of ByteTrack for tracking-by-detection and MOTR for end-to-end tracking.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-object tracking (MOT) is a core task in computer vision that involves detecting objects in video frames and associating them across time. The rise of deep learning has significantly advanced MOT, particularly within the tracking-by-detection paradigm, which remains the dominant approach. Advancements in modern deep learning-based methods accelerated in 2022 with the introduction of ByteTrack for tracking-by-detection and MOTR for end-to-end tracking. Our survey provides an in-depth analysis of deep learning-based MOT methods, systematically categorizing tracking-by-detection approaches into five groups: joint detection and embedding, heuristic-based, motion-based, affinity learning, and offline methods. In addition, we examine end-to-end tracking methods and compare them with existing alternative approaches. We evaluate the performance of recent trackers across multiple benchmarks and specifically assess their generality by comparing results across different domains. Our findings indicate that heuristic-based methods achieve state-of-the-art results on densely populated datasets with linear object motion, while deep learning-based association methods, in both tracking-by-detection and end-to-end approaches, excel in scenarios with complex motion patterns.
Related papers
- CAMELTrack: Context-Aware Multi-cue ExpLoitation for Online Multi-Object Tracking [68.24998698508344]
We introduce CAMEL, a novel association module for Context-Aware Multi-Cue ExpLoitation.<n>Unlike end-to-end detection-by-tracking approaches, our method remains lightweight and fast to train while being able to leverage external off-the-shelf models.<n>Our proposed online tracking pipeline, CAMELTrack, achieves state-of-the-art performance on multiple tracking benchmarks.
arXiv Detail & Related papers (2025-05-02T13:26:23Z) - Multi-object Tracking by Detection and Query: an efficient end-to-end manner [23.926668750263488]
Multi-object tracking is advancing through two dominant paradigms: traditional tracking by detection and newly emerging tracking by query.
We propose the tracking-by-detection-and-query paradigm, which is achieved by a Learnable Associator.
Compared to tracking-by-query models, LAID achieves competitive tracking accuracy with notably higher training efficiency.
arXiv Detail & Related papers (2024-11-09T14:38:08Z) - VOVTrack: Exploring the Potentiality in Videos for Open-Vocabulary Object Tracking [61.56592503861093]
This issue amalgamates the complexities of open-vocabulary object detection (OVD) and multi-object tracking (MOT)
Existing approaches to OVMOT often merge OVD and MOT methodologies as separate modules, predominantly focusing on the problem through an image-centric lens.
We propose VOVTrack, a novel method that integrates object states relevant to MOT and video-centric training to address this challenge from a video object tracking standpoint.
arXiv Detail & Related papers (2024-10-11T05:01:49Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
The proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector.
It is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
arXiv Detail & Related papers (2023-04-18T02:45:18Z) - QDTrack: Quasi-Dense Similarity Learning for Appearance-Only Multiple
Object Tracking [73.52284039530261]
We present Quasi-Dense Similarity Learning, which densely samples hundreds of object regions on a pair of images for contrastive learning.
We find that the resulting distinctive feature space admits a simple nearest neighbor search at inference time for object association.
We show that our similarity learning scheme is not limited to video data, but can learn effective instance similarity even from static input.
arXiv Detail & Related papers (2022-10-12T15:47:36Z) - Recent Advances in Embedding Methods for Multi-Object Tracking: A Survey [71.10448142010422]
Multi-object tracking (MOT) aims to associate target objects across video frames in order to obtain entire moving trajectories.
Embedding methods play an essential role in object location estimation and temporal identity association in MOT.
We first conduct a comprehensive overview with in-depth analysis for embedding methods in MOT from seven different perspectives.
arXiv Detail & Related papers (2022-05-22T06:54:33Z) - DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking [13.104037155691644]
We propose an end-to-end MOT method, with a Gaussian filter-inspired dynamic search region refinement module.
Our method can achieve the state-of-the-art performance with reasonable speed.
arXiv Detail & Related papers (2022-03-21T04:14:06Z) - Deep Learning on Monocular Object Pose Detection and Tracking: A
Comprehensive Overview [8.442460766094674]
Object pose detection and tracking has attracted increasing attention due to its wide applications in many areas, such as autonomous driving, robotics, and augmented reality.
Deep learning is the most promising one that has shown better performance than others.
This paper presents a comprehensive review of recent progress in object pose detection and tracking that belongs to the deep learning technical route.
arXiv Detail & Related papers (2021-05-29T12:59:29Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - Learning to associate detections for real-time multiple object tracking [0.0]
This study investigates the use of artificial neural networks to learn a similarity function that can be used among detections.
The proposed tracker matches the results obtained by state-of-the-art methods, it has run 58% faster than a recent and similar method, used as baseline.
arXiv Detail & Related papers (2020-07-12T17:08:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.