論文の概要: K-space and Image Domain Collaborative Energy based Model for Parallel
MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2203.10776v1
- Date: Mon, 21 Mar 2022 07:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 17:31:14.469069
- Title: K-space and Image Domain Collaborative Energy based Model for Parallel
MRI Reconstruction
- Title(参考訳): 並列MRI再構成のためのK空間と画像領域協調エネルギーモデル
- Authors: Zongjiang Tu, Chen Jiang, Yu Guan, Shanshan Wang, Jijun Liu, Qiegen
Liu, Dong Liang
- Abstract要約: 磁気共鳴(MR)画像取得時間の減少は、MRI検査をよりアクセスしやすくする可能性がある。
そこで我々は,K空間と画像領域の協調生成モデルを提案し,アンダーサンプル計測からMRデータを包括的に推定する。
実験による最先端技術との比較により, 提案手法は再構成における誤差が少なく, 異なる加速度因子下では安定であることがわかった。
- 参考スコア(独自算出の注目度): 21.317550364310343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decreasing magnetic resonance (MR) image acquisition times can potentially
make MR examinations more accessible. Prior arts including the deep learning
models have been devoted to solving the problem of long MRI imaging time.
Recently, deep generative models have exhibited great potentials in algorithm
robustness and usage flexibility. Nevertheless, no existing such schemes that
can be learned or employed directly to the k-space measurement. Furthermore,
how do the deep generative models work well in hybrid domain is also worth to
be investigated. In this work, by taking advantage of the deep en-ergy-based
models, we propose a k-space and image domain collaborative generative model to
comprehensively estimate the MR data from under-sampled measurement.
Experimental comparisons with the state-of-the-arts demonstrated that the
proposed hybrid method has less error in reconstruction and is more stable
under different acceleration factors.
- Abstract(参考訳): 磁気共鳴(MR)画像取得時間の減少は、MRI検査をよりアクセスしやすくする可能性がある。
ディープラーニングモデルを含む先行技術は、長いMRIイメージングタイムの問題を解決するために費やされてきた。
近年,深層生成モデルがアルゴリズムのロバスト性や使用柔軟性に大きな可能性を示している。
それでも、k-空間の測定を直接学習したり、利用したりできるようなスキームは存在しない。
さらに、ハイブリッドドメインにおける深層生成モデルはどのように機能するかについても検討する価値がある。
本研究では, 深部エネルギーベースモデルを用いて, k空間と画像領域の協調生成モデルを提案し, アンダーサンプル計測からMRデータを包括的に推定する。
実験結果と最新技術との比較により,提案手法は復元誤差が少なく,加速度係数の異なる場合より安定であることが判明した。
関連論文リスト
- Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Fast Controllable Diffusion Models for Undersampled MRI Reconstruction [9.257507373275288]
本研究は,MRIのアンダーサンプル再構成のための拡散モデルの制御可能な生成を促進させる,Predictor-Projector-Noisor (PPN) と呼ばれる新しいアルゴリズムを提案する。
以上の結果から, PPNは, 他の制御可能なサンプリング法に比べて, 再構成時間を大幅に短縮した, アンサンプ付きk空間計測に適合した高忠実MR画像を生成することがわかった。
論文 参考訳(メタデータ) (2023-11-20T05:58:05Z) - K-space Cold Diffusion: Learning to Reconstruct Accelerated MRI without
Noise [2.982793366290863]
ガウス雑音を伴わずにk空間における画像劣化と復元を行うk空間冷拡散モデルを提案する。
以上の結果から, この新たな劣化処理により, 高速MRIのための高品質な再構成画像が生成できることが示唆された。
論文 参考訳(メタデータ) (2023-11-16T19:34:18Z) - Universal Generative Modeling in Dual-domain for Dynamic MR Imaging [22.915796840971396]
我々は,高度にアンダーサンプリングされた測定値の再構成を行うために,k-spaceとDu-al-Domainコラボレーティブユニバーサル生成モデル(DD-UGM)を提案する。
より正確には、画像領域とk空間領域の両方の先行成分を普遍的な生成モデルで抽出し、これらの先行成分を適応的に処理し、より高速に処理する。
論文 参考訳(メタデータ) (2022-12-15T03:04:48Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - MRI Reconstruction Using Deep Energy-Based Model [21.748514538109173]
本研究では, 深部エネルギーモデルによる自己逆方向の協調を生かした新たな正規化戦略を提案する。
再構成のための他の生成モデルとは対照的に,提案手法では,再構成前の画像として深部エネルギー情報を用いて画像の質を向上させる。
論文 参考訳(メタデータ) (2021-09-07T05:24:55Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Fine-grained MRI Reconstruction using Attentive Selection Generative
Adversarial Networks [0.0]
高品質mri再構成を実現するための新しい注意に基づく深層学習フレームワークを提案する。
我々は,gan(generative adversarial network)フレームワークに大規模文脈的特徴統合と注意選択を組み込んだ。
論文 参考訳(メタデータ) (2021-03-13T09:58:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。