論文の概要: Improved Patch Denoising Diffusion Probabilistic Models for Magnetic Resonance Fingerprinting
- arxiv url: http://arxiv.org/abs/2410.23318v1
- Date: Tue, 29 Oct 2024 21:38:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:58:19.654913
- Title: Improved Patch Denoising Diffusion Probabilistic Models for Magnetic Resonance Fingerprinting
- Title(参考訳): 磁気共鳴フィンガープリントにおける拡散確率モデルの改善
- Authors: Perla Mayo, Carolin M. Pirkl, Alin Achim, Bjoern H. Menze, Mohammad Golbabaee,
- Abstract要約: MRF(Magnetic Resonance Fingerprinting)は、MRIの定量的手法である。
正確な再建を達成することは、特に高度に加速され、アンサンプされた買収において、依然として困難である。
MRF画像再構成のための条件拡散確率モデルを提案する。
- 参考スコア(独自算出の注目度): 7.379135816468852
- License:
- Abstract: Magnetic Resonance Fingerprinting (MRF) is a time-efficient approach to quantitative MRI, enabling the mapping of multiple tissue properties from a single, accelerated scan. However, achieving accurate reconstructions remains challenging, particularly in highly accelerated and undersampled acquisitions, which are crucial for reducing scan times. While deep learning techniques have advanced image reconstruction, the recent introduction of diffusion models offers new possibilities for imaging tasks, though their application in the medical field is still emerging. Notably, diffusion models have not yet been explored for the MRF problem. In this work, we propose for the first time a conditional diffusion probabilistic model for MRF image reconstruction. Qualitative and quantitative comparisons on in-vivo brain scan data demonstrate that the proposed approach can outperform established deep learning and compressed sensing algorithms for MRF reconstruction. Extensive ablation studies also explore strategies to improve computational efficiency of our approach.
- Abstract(参考訳): MRF (Magnetic Resonance Fingerprinting) は定量的MRIにおける時間効率のよいアプローチであり、単一の加速スキャンから複数の組織特性のマッピングを可能にする。
しかし、特にスキャン時間を短縮するために欠かせない高度かつアンサンプされた買収において、正確な再構築を実現することは依然として困難である。
深層学習技術は高度な画像再構成を行っているが、近年の拡散モデルの導入は、医療分野での応用がまだ進んでいるものの、イメージングタスクに新たな可能性をもたらす。
特に、MRF問題に対する拡散モデルはまだ検討されていない。
本研究では,MRF画像再構成のための条件拡散確率モデルを提案する。
生体内脳スキャンデータの質的および定量的比較により、提案手法が確立された深層学習および圧縮センシングアルゴリズムより優れたMRF再構成を行うことを示す。
大規模なアブレーション研究は、我々のアプローチの計算効率を改善する戦略も探求している。
関連論文リスト
- A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
本研究は,超高分解能MRSIのためのフローベースTrncated Denoising Diffusion Modelを導入する。
拡散鎖を切断することで拡散過程を短縮し, 正規化フローベースネットワークを用いて切断工程を推定する。
FTDDMは既存の生成モデルよりも優れており、サンプリングプロセスを9倍以上高速化している。
論文 参考訳(メタデータ) (2024-10-25T03:42:35Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
論文 参考訳(メタデータ) (2024-07-03T01:37:56Z) - Fast Controllable Diffusion Models for Undersampled MRI Reconstruction [9.257507373275288]
本研究は,MRIのアンダーサンプル再構成のための拡散モデルの制御可能な生成を促進させる,Predictor-Projector-Noisor (PPN) と呼ばれる新しいアルゴリズムを提案する。
以上の結果から, PPNは, 他の制御可能なサンプリング法に比べて, 再構成時間を大幅に短縮した, アンサンプ付きk空間計測に適合した高忠実MR画像を生成することがわかった。
論文 参考訳(メタデータ) (2023-11-20T05:58:05Z) - K-space Cold Diffusion: Learning to Reconstruct Accelerated MRI without
Noise [2.982793366290863]
ガウス雑音を伴わずにk空間における画像劣化と復元を行うk空間冷拡散モデルを提案する。
以上の結果から, この新たな劣化処理により, 高速MRIのための高品質な再構成画像が生成できることが示唆された。
論文 参考訳(メタデータ) (2023-11-16T19:34:18Z) - Correlated and Multi-frequency Diffusion Modeling for Highly
Under-sampled MRI Reconstruction [14.687337090732036]
既存のMRI再建法の多くは、特定の組織領域を考慮せずに、全MR画像のtar-geted再構成を行う。
これは、診断のための重要でない組織に対する再構成精度を強調できない可能性がある。
そこで本研究では,k空間データの特性と拡散過程を組み合わせることで,マルチ周波数先行のマイニングに焦点をあてる。
論文 参考訳(メタデータ) (2023-09-02T07:51:27Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。