論文の概要: Adaptive and Cascaded Compressive Sensing
- arxiv url: http://arxiv.org/abs/2203.10779v1
- Date: Mon, 21 Mar 2022 07:50:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-23 01:30:32.781832
- Title: Adaptive and Cascaded Compressive Sensing
- Title(参考訳): 適応型およびカスケード型圧縮センシング
- Authors: Chenxi Qiu, Tao Yue, Xuemei Hu
- Abstract要約: シーン依存型適応圧縮センシング(CS)は、CSの性能を大幅に向上させる大きな可能性を秘めている。
そこで本研究では,再構成誤差を直接予測可能な制限等尺特性(RIP)条件に基づく誤差クラッピングを提案する。
また,異なる適応サンプリング段階から得られた情報を効率的に活用できる機能融合再構成ネットワークを提案する。
- 参考スコア(独自算出の注目度): 10.162966219929887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scene-dependent adaptive compressive sensing (CS) has been a long pursuing
goal which has huge potential in significantly improving the performance of CS.
However, without accessing to the ground truth image, how to design the
scene-dependent adaptive strategy is still an open-problem and the improvement
in sampling efficiency is still quite limited. In this paper, a restricted
isometry property (RIP) condition based error clamping is proposed, which could
directly predict the reconstruction error, i.e. the difference between the
currently-stage reconstructed image and the ground truth image, and adaptively
allocate samples to different regions at the successive sampling stage.
Furthermore, we propose a cascaded feature fusion reconstruction network that
could efficiently utilize the information derived from different adaptive
sampling stages. The effectiveness of the proposed adaptive and cascaded CS
method is demonstrated with extensive quantitative and qualitative results,
compared with the state-of-the-art CS algorithms.
- Abstract(参考訳): シーン依存型適応圧縮センシング(CS)は、CSの性能を大幅に向上させる大きな可能性を秘めている。
しかし, シーン依存適応戦略を設計する方法は, 地上の真理画像にアクセスすることなく, 依然としてオープンプロブレムであり, サンプリング効率の向上は極めて限られている。
本稿では,現在再現されている画像と地上の真実像との差を直接予測し,連続したサンプリング段階においてサンプルを異なる領域に適応的に割り当てる,制限等尺性(RIP)条件に基づく誤差クラッピングを提案する。
さらに,様々な適応的サンプリング段階から得られた情報を効率的に活用できるカスケード特徴融合再構成ネットワークを提案する。
適応型およびカスケード型CS法の有効性を,最先端のCSアルゴリズムと比較し,定量的,質的な結果で実証した。
関連論文リスト
- Overcoming Distribution Mismatch in Quantizing Image Super-Resolution Networks [53.23803932357899]
量子化は画像超解像(SR)ネットワークの精度を低下させる。
既存の作業は、テスト時間中に量子化範囲を動的に適応することで、この分散ミスマッチ問題に対処する。
本稿では,SRネットワークにおける分散ミスマッチ問題を効果的に克服する量子化対応学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-25T08:50:01Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA)は、現実世界の超解像(SR)における領域ギャップ問題に効果的に対処できる
本稿では,画像SR(SODA-SR)のためのSOurce-free Domain Adaptationフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-31T03:14:44Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic
SAR Imaging with Adaptive Threshold [13.379416816598873]
本稿では,解析的反復収縮しきい値決定アルゴリズム(ALISTA)に基づく,効率的なスパース展開ネットワークを提案する。
ATASI-Netの各層における重み行列は、オフライン最適化問題の解法として事前計算される。
さらに、各方位領域画素に対して適応しきい値を導入し、しきい値収縮を層蒸着だけでなく素子的にも可能とする。
論文 参考訳(メタデータ) (2022-11-30T09:55:45Z) - Adaptive Step-Size Methods for Compressed SGD [15.32764898836189]
分散および分散化ネットワークにおける通信ボトルネックに対処するために,圧縮分散型グラディエント Descent (SGD) アルゴリズムが最近提案されている。
我々は、圧縮データセットの順序収束率を確立するために使用するスケーリングステップを導入する。
実世界のデータセットに対する実験結果を示す。
論文 参考訳(メタデータ) (2022-07-20T17:20:58Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Improving Bayesian Inference in Deep Neural Networks with Variational
Structured Dropout [19.16094166903702]
ベイズネットワークにおける近似推論として,ドロップアウトトレーニングの解釈に触発された新しい変分構造近似を提案する。
そこで,この限界を克服するために,Variational Structured Dropout (VSD) と呼ばれる新しい手法を提案する。
標準ベンチマークの実験を行い、予測精度と不確実性推定の両方において、最新手法に対するVSDの有効性を実証します。
論文 参考訳(メタデータ) (2021-02-16T02:33:43Z) - Efficient Semantic Image Synthesis via Class-Adaptive Normalization [116.63715955932174]
クラス適応正規化(CLADE)は、セマンティッククラスにのみ適応する軽量かつ等価なバリアントである。
セマンティクスレイアウトから計算したクラス内位置マップエンコーディングを導入し,cladeの正規化パラメータを変調する。
提案されたCLADEは異なるSPADEベースのメソッドに一般化し、SPADEと比較して同等の生成品質を達成できる。
論文 参考訳(メタデータ) (2020-12-08T18:59:32Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。