論文の概要: ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic
SAR Imaging with Adaptive Threshold
- arxiv url: http://arxiv.org/abs/2211.16855v1
- Date: Wed, 30 Nov 2022 09:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 17:49:59.927381
- Title: ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic
SAR Imaging with Adaptive Threshold
- Title(参考訳): ATASI-Net:適応閾値を用いた断層撮影のための効率的なスパース再構成ネットワーク
- Authors: Muhan Wang, Zhe Zhang, Xiaolan Qiu, Silin Gao, Yue Wang
- Abstract要約: 本稿では,解析的反復収縮しきい値決定アルゴリズム(ALISTA)に基づく,効率的なスパース展開ネットワークを提案する。
ATASI-Netの各層における重み行列は、オフライン最適化問題の解法として事前計算される。
さらに、各方位領域画素に対して適応しきい値を導入し、しきい値収縮を層蒸着だけでなく素子的にも可能とする。
- 参考スコア(独自算出の注目度): 13.379416816598873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tomographic SAR technique has attracted remarkable interest for its ability
of three-dimensional resolving along the elevation direction via a stack of SAR
images collected from different cross-track angles. The emerged compressed
sensing (CS)-based algorithms have been introduced into TomoSAR considering its
super-resolution ability with limited samples. However, the conventional
CS-based methods suffer from several drawbacks, including weak noise
resistance, high computational complexity, and complex parameter fine-tuning.
Aiming at efficient TomoSAR imaging, this paper proposes a novel efficient
sparse unfolding network based on the analytic learned iterative shrinkage
thresholding algorithm (ALISTA) architecture with adaptive threshold, named
Adaptive Threshold ALISTA-based Sparse Imaging Network (ATASI-Net). The weight
matrix in each layer of ATASI-Net is pre-computed as the solution of an
off-line optimization problem, leaving only two scalar parameters to be learned
from data, which significantly simplifies the training stage. In addition,
adaptive threshold is introduced for each azimuth-range pixel, enabling the
threshold shrinkage to be not only layer-varied but also element-wise.
Moreover, the final learned thresholds can be visualized and combined with the
SAR image semantics for mutual feedback. Finally, extensive experiments on
simulated and real data are carried out to demonstrate the effectiveness and
efficiency of the proposed method.
- Abstract(参考訳): トモグラフィーSAR技術は、異なるトラック角度から収集されたSAR画像のスタックを介して、標高方向に沿って3次元分解する能力に顕著な関心を集めている。
emerged compression sensing (cs)ベースのアルゴリズムは、限られたサンプルによる超解像能力を考慮してtomosarに導入されている。
しかし,従来のcs法では,ノイズ抵抗の弱さ,計算複雑性の高まり,複雑なパラメータの微調整など,いくつかの欠点がある。
本稿では, 適応閾値を持つ解析的反復収縮しきい値アルゴリズム (ALISTA) に基づく, アダプティブスレッショルド ALISTA ベースのスパースイメージングネットワーク (ATASI-Net) に基づく, 効率的なスパース展開ネットワークを提案する。
ATASI-Netの各層における重み行列はオフライン最適化問題の解法として事前計算され、データから学習すべきスカラーパラメータは2つしか残らず、トレーニング段階を著しく単純化する。
さらに、各方位範囲画素に対して適応しきい値を導入し、閾値縮小を層変動だけでなく要素分割も可能とした。
さらに、最終的な学習閾値を可視化し、相互フィードバックのためのSARイメージセマンティクスと組み合わせることができる。
最後に、シミュレーションおよび実データに関する広範な実験を行い、提案手法の有効性と効率を実証した。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation [7.314877483509877]
形状コンパクト性は、多くの画像分割タスクにおいて興味深い領域を記述するための重要な幾何学的性質である。
そこで本稿では,従来の形状特徴を取り入れた画像分割問題を解くために,新しい2つのアルゴリズムを提案する。
提案アルゴリズムは、ノイズの多い画像データセット上で20%のトレーニングをすることで、IoUを大幅に改善する。
論文 参考訳(メタデータ) (2024-05-23T11:05:35Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - Efficient and Degradation-Adaptive Network for Real-World Image
Super-Resolution [28.00231586840797]
実世界の画像超解像(Real-ISR)は、実世界の画像の未知の複雑な劣化のために難しい課題である。
近年のReal-ISRの研究は、画像劣化空間をモデル化することによって大きな進歩を遂げている。
本稿では,各入力画像の劣化を推定してパラメータを適応的に指定する,効率的な劣化適応型超解像ネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-27T05:59:13Z) - Deep Amended Gradient Descent for Efficient Spectral Reconstruction from
Single RGB Images [42.26124628784883]
本稿では、AGD-Netという、コンパクトで効率的でエンドツーエンドの学習ベースのフレームワークを提案する。
まず、古典的勾配降下アルゴリズムに基づいて問題を明示的に定式化する。
AGD-Netは、平均1.0dB以上のリコンストラクション品質を向上させることができる。
論文 参考訳(メタデータ) (2021-08-12T05:54:09Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。