論文の概要: Geolocation estimation of target vehicles using image processing and
geometric computation
- arxiv url: http://arxiv.org/abs/2203.10938v1
- Date: Tue, 8 Mar 2022 13:15:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-27 05:47:17.269766
- Title: Geolocation estimation of target vehicles using image processing and
geometric computation
- Title(参考訳): 画像処理と幾何計算による目標車両の位置推定
- Authors: Elnaz Namazi and Rudolf Mester and Chaoru Lu and Jingyue Li
- Abstract要約: 車両の位置を推定することは、インテリジェントな交通管理システムにおける重要なコンポーネントの1つである。
近代車両における先進的なセンシング・通信技術の発展により、そのような車両を用いて観測車両の交通データを推定することが可能となった。
本稿では, 深層学習, 画像処理, 幾何計算を統合した新しい手法を提案する。
- 参考スコア(独自算出の注目度): 9.581332581510184
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimating vehicles' locations is one of the key components in intelligent
traffic management systems (ITMSs) for increasing traffic scene awareness.
Traditionally, stationary sensors have been employed in this regard. The
development of advanced sensing and communication technologies on modern
vehicles (MVs) makes it feasible to use such vehicles as mobile sensors to
estimate the traffic data of observed vehicles. This study aims to explore the
capabilities of a monocular camera mounted on an MV in order to estimate the
geolocation of the observed vehicle in a global positioning system (GPS)
coordinate system. We proposed a new methodology by integrating deep learning,
image processing, and geometric computation to address the observed-vehicle
localization problem. To evaluate our proposed methodology, we developed new
algorithms and tested them using real-world traffic data. The results indicated
that our proposed methodology and algorithms could effectively estimate the
observed vehicle's latitude and longitude dynamically.
- Abstract(参考訳): 車両の位置を推定することは、交通シーンの認識を高めるためのインテリジェント交通管理システム(ITMS)における重要な要素の1つである。
伝統的に、この点において静止センサーが用いられている。
最新の車両(MV)における高度なセンシング・通信技術の開発により、移動体センサーなどの車両を用いて観測車両の交通データを推定することが可能になった。
本研究では,gps(global positioning system)座標系における観測車両の位置を推定するために,mvに搭載された単眼カメラの能力を検討することを目的とした。
本研究では,深層学習,画像処理,幾何計算を統合した新しい手法を提案する。
提案手法を評価するために,新しいアルゴリズムを開発し,実世界のトラヒックデータを用いてテストを行った。
その結果,提案手法とアルゴリズムにより観測車両の緯度と経度を動的に推定できることが示唆された。
関連論文リスト
- GITSR: Graph Interaction Transformer-based Scene Representation for Multi Vehicle Collaborative Decision-making [9.910230703889956]
本研究では,交通状態の空間的相互作用の効率的な表現とモデル化に焦点を当てた。
本研究では,グラフインタラクショントランスフォーマに基づくシーン表現のための効果的なフレームワークであるGITSRを提案する。
論文 参考訳(メタデータ) (2024-11-03T15:27:26Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Leveraging GNSS and Onboard Visual Data from Consumer Vehicles for Robust Road Network Estimation [18.236615392921273]
本稿では,自動運転車における道路グラフ構築の課題について述べる。
本稿では,これらの標準センサから取得したグローバルナビゲーション衛星システム(GNSS)のトレースと基本画像データについて提案する。
我々は、畳み込みニューラルネットワークを用いて、道路中心のセマンティックセグメンテーションタスクとして問題をフレーミングすることで、データの空間情報を利用する。
論文 参考訳(メタデータ) (2024-08-03T02:57:37Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
我々は、視線データを用いて、運転者の車両のエゴ軌道を推定することに集中する。
次に、GPSとビデオ入力と視線データを組み合わせた新しいマルチモーダルエゴ軌道予測ネットワークであるG-MEMPを開発する。
その結果,G-MEMPは両ベンチマークにおいて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-12-13T23:06:30Z) - Visual Perception System for Autonomous Driving [9.659835301514288]
本研究は、走行物体の軌跡追跡と予測を統合して衝突を防止する、自律走行のための視覚的認識システムを導入する。
このシステムは歩行者の動きの手がかりを利用して、その動きを監視し、予測し、同時に環境をマッピングする。
このアプローチの性能、効率、レジリエンスは、シミュレーションと実世界の両方のデータセットの包括的な評価によって実証される。
論文 参考訳(メタデータ) (2023-03-03T23:12:43Z) - Continuous Self-Localization on Aerial Images Using Visual and Lidar
Sensors [25.87104194833264]
本研究では,車両のセンサ情報を未確認対象領域の航空画像に登録することにより,屋外環境におけるジオトラッキング手法を提案する。
我々は、地上および空中画像から視覚的特徴を抽出するために、計量学習環境でモデルを訓練する。
本手法は,視認不可能な正光の自己局在化のために,エンド・ツー・エンドの微分可能なモデルでオンボードカメラを利用する最初の方法である。
論文 参考訳(メタデータ) (2022-03-07T12:25:44Z) - Learning Traffic Speed Dynamics from Visualizations [3.0969191504482243]
時空の可視化からマクロ交通速度のダイナミクスを学習する深層学習法を提案する。
既存の推定手法と比較して,より詳細な推定解決が可能となる。
次世代シミュレーションプログラム(NGSIM)とドイツ高速道路(HighD)のデータセットから得られたデータを用いて,高速道路区間の高分解能交通速度場を推定した。
論文 参考訳(メタデータ) (2021-05-04T11:17:43Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
近年、古典的占有グリッドマップのアプローチが動的占有グリッドマップに拡張されている。
本稿では,従来のアプローチのさらなる発展について述べる。
複数のレーダセンサのデータを融合し、グリッドベースの物体追跡・マッピング手法を適用する。
論文 参考訳(メタデータ) (2020-08-09T09:26:30Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
包括的調査を行い、深層学習を用いた局所化とマッピングのための新しい分類法を提案する。
オードメトリ推定、マッピング、グローバルローカライゼーション、同時ローカライゼーション、マッピングなど、幅広いトピックがカバーされている。
この研究がロボティクス、コンピュータビジョン、機械学習コミュニティの新たな成果を結び付けることを願っている。
論文 参考訳(メタデータ) (2020-06-22T19:01:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。