論文の概要: GITSR: Graph Interaction Transformer-based Scene Representation for Multi Vehicle Collaborative Decision-making
- arxiv url: http://arxiv.org/abs/2411.01608v1
- Date: Sun, 03 Nov 2024 15:27:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:49.947663
- Title: GITSR: Graph Interaction Transformer-based Scene Representation for Multi Vehicle Collaborative Decision-making
- Title(参考訳): GITSR:複数車両協調意思決定のためのグラフインタラクショントランスフォーマを用いたシーン表現
- Authors: Xingyu Hu, Lijun Zhang, Dejian Meng, Ye Han, Lisha Yuan,
- Abstract要約: 本研究では,交通状態の空間的相互作用の効率的な表現とモデル化に焦点を当てた。
本研究では,グラフインタラクショントランスフォーマに基づくシーン表現のための効果的なフレームワークであるGITSRを提案する。
- 参考スコア(独自算出の注目度): 9.910230703889956
- License:
- Abstract: In this study, we propose GITSR, an effective framework for Graph Interaction Transformer-based Scene Representation for multi-vehicle collaborative decision-making in intelligent transportation system. In the context of mixed traffic where Connected Automated Vehicles (CAVs) and Human Driving Vehicles (HDVs) coexist, in order to enhance the understanding of the environment by CAVs to improve decision-making capabilities, this framework focuses on efficient scene representation and the modeling of spatial interaction behaviors of traffic states. We first extract features of the driving environment based on the background of intelligent networking. Subsequently, the local scene representation, which is based on the agent-centric and dynamic occupation grid, is calculated by the Transformer module. Besides, feasible region of the map is captured through the multi-head attention mechanism to reduce the collision of vehicles. Notably, spatial interaction behaviors, based on motion information, are modeled as graph structures and extracted via Graph Neural Network (GNN). Ultimately, the collaborative decision-making among multiple vehicles is formulated as a Markov Decision Process (MDP), with driving actions output by Reinforcement Learning (RL) algorithms. Our algorithmic validation is executed within the extremely challenging scenario of highway off-ramp task, thereby substantiating the superiority of agent-centric approach to scene representation. Simulation results demonstrate that the GITSR method can not only effectively capture scene representation but also extract spatial interaction data, outperforming the baseline method across various comparative metrics.
- Abstract(参考訳): 本研究では,知的交通システムにおける複数車両協調意思決定のためのグラフインタラクショントランスフォーマーに基づくシーン表現のための効果的なフレームワークであるGITSRを提案する。
コネクテッド・オートマチック・ビークル(CAV)とヒューマン・ドライビング・ビークル(HDV)が共存する混在交通の文脈において、CAVによる環境理解を高め、意思決定能力を向上させるために、この枠組みは交通状態の効率的なシーン表現と空間的相互作用のモデル化に焦点を当てている。
まず,知的ネットワークの背景から運転環境の特徴を抽出する。
次に、エージェント中心の動的占有グリッドに基づくローカルシーン表現をTransformerモジュールで計算する。
さらに、地図の可能な領域は、車両の衝突を減らすためにマルチヘッドアテンション機構を介してキャプチャされる。
特に、動き情報に基づく空間的相互作用の挙動は、グラフ構造としてモデル化され、グラフニューラルネットワーク(GNN)を介して抽出される。
最終的に、複数の車両間の協調的な意思決定はマルコフ決定プロセス (MDP) として定式化され、強化学習 (RL) アルゴリズムによって出力される駆動動作を持つ。
我々のアルゴリズムによる検証は、ハイウェイオフランプタスクの極めて困難なシナリオの中で実行され、それによって、シーン表現に対するエージェント中心アプローチの優位性を実証する。
シミュレーションの結果, GITSR法はシーン表現を効果的にキャプチャするだけでなく, 空間的相互作用データを抽出し, 様々な比較指標のベースライン法よりも優れていることがわかった。
関連論文リスト
- SocialFormer: Social Interaction Modeling with Edge-enhanced Heterogeneous Graph Transformers for Trajectory Prediction [3.733790302392792]
SocialFormerはエージェント間相互作用を意識した軌道予測手法である。
本稿では,エージェント動作の時間的社会的挙動をモデル化するために,ゲートリカレント単位(GRU)に基づくテンポラルエンコーダを提案する。
一般的なnuScenesベンチマークの軌道予測タスクとしてSocialFormerを評価し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-06T19:47:23Z) - GraphAD: Interaction Scene Graph for End-to-end Autonomous Driving [16.245949174447574]
我々は,エゴ車両,道路エージェント,地図要素間の相互作用をモデル化するための統合手法として,インタラクションシーングラフ(ISG)を提案する。
提案手法をnuScenesデータセット上で評価した。
論文 参考訳(メタデータ) (2024-03-28T02:22:28Z) - Real-Time Motion Prediction via Heterogeneous Polyline Transformer with
Relative Pose Encoding [121.08841110022607]
既存のエージェント中心の手法は、公開ベンチマークで顕著な性能を示した。
K-nearest neighbor attention with relative pose encoding (KNARPE) は、トランスフォーマーがペアワイズ相対表現を使用できる新しいアテンション機構である。
エージェント間でコンテキストを共有し、変化しないコンテキストを再利用することで、私たちのアプローチはシーン中心のメソッドと同じくらい効率的になり、最先端のエージェント中心のメソッドと同等に実行されます。
論文 参考訳(メタデータ) (2023-10-19T17:59:01Z) - A Deeply Supervised Semantic Segmentation Method Based on GAN [9.441379867578332]
提案モデルは,GAN(Generative Adversarial Network)フレームワークを従来のセマンティックセグメンテーションモデルに統合する。
本手法の有効性は,道路ひび割れデータセットの性能向上によって実証された。
論文 参考訳(メタデータ) (2023-10-06T08:22:24Z) - Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory
Prediction using Diffusion Graph Convolutional Networks [17.989423104706397]
本研究では,グラフに基づく対話型多モード軌道予測フレームワークを提案する。
このフレームワーク内では、車両の動きは時間変化グラフのノードとして概念化され、交通相互作用は動的隣接行列によって表現される。
我々は、意図特異的な特徴融合を採用し、歴史的および将来の埋め込みの適応的な統合を可能にする。
論文 参考訳(メタデータ) (2023-09-05T06:28:13Z) - Social Occlusion Inference with Vectorized Representation for Autonomous
Driving [0.0]
本稿では,エージェント・トラジェクトリとシーン・コンテキストから,エゴカーの視点を表す占有グリッド・マップ (OGM) へのマッピングを学習する,新しいソーシャル・オクルージョン・推論手法を提案する。
ベクトル化表現の性能を検証するため,完全トランスフォーマーエンコーダデコーダアーキテクチャに基づくベースラインを設計する。
我々は,現状の成果よりも優れるInterActionデータセットにおいて,符号なしの交差点に対するアプローチを評価する。
論文 参考訳(メタデータ) (2023-03-18T10:44:39Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
本稿では,オブジェクトの提案から潜在的意味関係を予測するグラフ畳み込みネットワークRSG-Netを提案する。
実験の結果、このネットワークはロードシーングラフデータセットに基づいてトレーニングされており、エゴ車両周辺のオブジェクト間の潜在的な意味関係を効率的に予測できることがわかった。
論文 参考訳(メタデータ) (2022-07-16T12:40:17Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。