論文の概要: A Bayesian Deep Learning Technique for Multi-Step Ahead Solar Generation
Forecasting
- arxiv url: http://arxiv.org/abs/2203.11379v1
- Date: Mon, 21 Mar 2022 22:53:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-24 09:22:08.428491
- Title: A Bayesian Deep Learning Technique for Multi-Step Ahead Solar Generation
Forecasting
- Title(参考訳): マルチステップアヘッド太陽光発電予測のためのベイズ深層学習手法
- Authors: Devinder Kaur, Shama Naz Islam, and Md. Apel Mahmud
- Abstract要約: 提案手法は, 太陽光発電データにおける外れ値をより適切に考慮するために, アルファベータのばらつきを適用した。
提案手法はAusgridからの高粒度太陽光発電データについて検討した。
- 参考スコア(独自算出の注目度): 0.3441021278275805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose an improved Bayesian bidirectional long-short term
memory (BiLSTM) neural networks for multi-step ahead (MSA) solar generation
forecasting. The proposed technique applies alpha-beta divergence for a more
appropriate consideration of outliers in the solar generation data and
resulting variability of the weight parameter distribution in the neural
network. The proposed method is examined on highly granular solar generation
data from Ausgrid using probabilistic evaluation metrics such as Pinball loss
and Winkler score. Moreover, a comparative analysis between MSA and the
single-step ahead (SSA) forecasting is provided to test the effectiveness of
the proposed method on variable forecasting horizons. The numerical results
clearly demonstrate that the proposed Bayesian BiLSTM with alpha-beta
divergence outperforms standard Bayesian BiLSTM and other benchmark methods for
MSA forecasting in terms of error performance.
- Abstract(参考訳): 本稿では,多段先進(MSA)太陽発生予測のための改良されたベイズ型双方向長寿命メモリ(BiLSTM)ニューラルネットワークを提案する。
提案手法は, ニューラルネットワークにおける重みパラメータ分布の変動性を考慮し, 太陽発生データにおける異常値のより適切な考慮にアルファベータ発散を適用する。
提案手法は, ピンボール損失やウィンクラー値などの確率的評価指標を用いて, Ausgrid からの高粒度太陽光発電データについて検討した。
さらに,MSAとSSA(Single-step ahead)予測の比較分析を行い,提案手法の有効性について検討した。
解析結果から,アルファベータ分散を用いたベイズBiLSTMが標準ベイズBiLSTMと他のベンチマーク手法よりも誤差性能が優れていることが示された。
関連論文リスト
- Enhancing Multivariate Time Series-based Solar Flare Prediction with Multifaceted Preprocessing and Contrastive Learning [0.9374652839580181]
正確な太陽フレア予測は、宇宙飛行士、宇宙機器、衛星通信システムに強い太陽フレアがもたらす重大なリスクのために重要である。
本研究は、先進的なデータ前処理と分類手法を利用して、太陽フレア予測を強化する。
論文 参考訳(メタデータ) (2024-09-21T05:00:34Z) - Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF [0.0]
本研究の目的は、太陽フレアとその起源領域の隠れた関係と進化的特性を明らかにすることである。
True Skill Statistic (TSS) とHeidke Skill Score (HSS) の双方で平均5%の増加が認められた。
論文 参考訳(メタデータ) (2024-09-06T18:12:05Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - A VAE-Based Bayesian Bidirectional LSTM for Renewable Energy Forecasting [0.4588028371034407]
再生可能エネルギーの断続的な性質は ネットワークの運用計画に 新たな課題をもたらします
本稿では,データとモデルの不確実性に対処し,再生可能発電予測のための新しいベイズ確率的手法を提案する。
VAE-Bayesian BiLSTMは、データセットの異なるサイズに対する予測精度と計算効率において、他の確率的深層学習法よりも優れていると推定された。
論文 参考訳(メタデータ) (2021-03-24T03:47:20Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques [2.3436632098950456]
本稿では,スマートグリッド(SG)システムの最先端予測手法について概説する。
統計学,機械学習(ML),深層学習(DL)などの従来の点予測手法について検討した。
ヴィクトリア朝の電力消費とアメリカの電力(AEP)の比較ケーススタディを行った。
論文 参考訳(メタデータ) (2020-11-25T09:17:07Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z) - Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees [49.91477656517431]
量子化に基づく解法は、フェデレートラーニング(FL)において広く採用されている。
上記のプロパティをすべて享受する既存のメソッドはありません。
本稿では,SIGNSGDに基づく直感的かつ理論的に簡易な手法を提案し,そのギャップを埋める。
論文 参考訳(メタデータ) (2020-02-25T15:12:15Z) - An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning [1.52292571922932]
太陽エネルギーの非定常特性のため、短期的な太陽照度予測は困難である。
日内太陽光のマルチスケール予測のための統一アーキテクチャを提案する。
提案手法は,全試験場の平均RMSEを71.5%削減する。
論文 参考訳(メタデータ) (2019-05-07T14:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。