論文の概要: Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF
- arxiv url: http://arxiv.org/abs/2409.04542v1
- Date: Fri, 6 Sep 2024 18:12:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 22:10:46.391876
- Title: Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF
- Title(参考訳): Slim-TSFを用いたハイブリッド組込み特徴選択と分類手法
- Authors: Anli Ji, Chetraj Pandey, Berkay Aydin,
- Abstract要約: 本研究の目的は、太陽フレアとその起源領域の隠れた関係と進化的特性を明らかにすることである。
True Skill Statistic (TSS) とHeidke Skill Score (HSS) の双方で平均5%の増加が認められた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional solar flare forecasting approaches have mostly relied on physics-based or data-driven models using solar magnetograms, treating flare predictions as a point-in-time classification problem. This approach has limitations, particularly in capturing the evolving nature of solar activity. Recognizing the limitations of traditional flare forecasting approaches, our research aims to uncover hidden relationships and the evolutionary characteristics of solar flares and their source regions. Our previously proposed Sliding Window Multivariate Time Series Forest (Slim-TSF) has shown the feasibility of usage applied on multivariate time series data. A significant aspect of this study is the comparative analysis of our updated Slim-TSF framework against the original model outcomes. Preliminary findings indicate a notable improvement, with an average increase of 5\% in both the True Skill Statistic (TSS) and Heidke Skill Score (HSS). This enhancement not only underscores the effectiveness of our refined methodology but also suggests that our systematic evaluation and feature selection approach can significantly advance the predictive accuracy of solar flare forecasting models.
- Abstract(参考訳): 従来の太陽フレア予測手法は、主に太陽磁気グラムを用いた物理モデルやデータ駆動モデルに依存しており、フレア予測をポイント・イン・タイムの分類問題として扱う。
このアプローチには制限があり、特に太陽活動の進化する性質を捉えている。
本研究は,従来のフレア予測手法の限界を認識し,太陽フレアとその起源領域の隠れた関係と進化的特性を明らかにすることを目的とする。
これまで提案したスライディングウィンドウ多変量時系列フォレスト(Slim-TSF)は,多変量時系列データに適用可能な利用可能性を示した。
この研究の重要な側面は、Slim-TSFフレームワークのオリジナルのモデル結果に対する比較分析である。
また,True Skill Statistic (TSS) とHeidke Skill Score (HSS) のいずれにおいても平均56%の増加が認められた。
この拡張は、改良された手法の有効性を裏付けるだけでなく、我々の系統評価と特徴選択アプローチが太陽フレア予測モデルの予測精度を大幅に向上させることができることを示唆している。
関連論文リスト
- Enhancing Multivariate Time Series-based Solar Flare Prediction with Multifaceted Preprocessing and Contrastive Learning [0.9374652839580181]
正確な太陽フレア予測は、宇宙飛行士、宇宙機器、衛星通信システムに強い太陽フレアがもたらす重大なリスクのために重要である。
本研究は、先進的なデータ前処理と分類手法を利用して、太陽フレア予測を強化する。
論文 参考訳(メタデータ) (2024-09-21T05:00:34Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Active Region-based Flare Forecasting with Sliding Window Multivariate
Time Series Forest Classifiers [0.0]
我々は、高次元データに使用される複雑で理解できないブラックボックスモデルと関連するサブインターバルの探索の間のギャップを橋渡しする。
本研究は, 太陽フレア予測において, 風下時系列森林分類器が有効であることを示す。
論文 参考訳(メタデータ) (2024-02-05T19:34:12Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Explaining Full-disk Deep Learning Model for Solar Flare Prediction
using Attribution Methods [0.6882042556551611]
本研究では,太陽フレア予測モデルを提案する。
実際のスキル統計(TSS)とハイドケスキルスコア(HSS)を用いて、モデル全体の性能を評価する。
我々の分析では、太陽フレアのフルディスク予測が活動領域(AR)の特徴と一致していることが判明した。
論文 参考訳(メタデータ) (2023-07-29T03:18:56Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Feature Selection on a Flare Forecasting Testbed: A Comparative Study of
24 Methods [0.7768952514701895]
SWAN-SFには54のユニークな特徴があり、24の定量的特徴が活動領域の光球磁場マップから計算されている。
本研究では,これらの特徴がフレア予測の野心的な課題に与える影響を定量的に評価する問題を,初めて体系的に攻撃した。
論文 参考訳(メタデータ) (2021-09-30T00:23:09Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - How to Train Your Flare Prediction Model: Revisiting Robust Sampling of
Rare Events [0.9851812512860351]
本稿では,メタデータの特徴時系列による太陽フレア予測のケーススタディとして,顕著なクラス不均衡と時間的コヒーレントな問題として扱う。
時系列予測における連続性の要求によって引き起こされる時間的コヒーレンスの概念を概観し、この効果の適切な理解の欠如がモデルの性能を飛躍的に向上させることを示した。
これらの課題に対する主要な改善策を再考し、これらの改善がパフォーマンスに与える影響を正確に示すいくつかの実験を示す。
論文 参考訳(メタデータ) (2021-03-12T21:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。