A Locally Adaptive Algorithm for Multiple Testing with Network Structure
- URL: http://arxiv.org/abs/2203.11461v5
- Date: Mon, 10 Feb 2025 09:42:09 GMT
- Title: A Locally Adaptive Algorithm for Multiple Testing with Network Structure
- Authors: Ziyi Liang, T. Tony Cai, Wenguang Sun, Yin Xia,
- Abstract summary: This paper introduces a flexible framework designed to integrate a broad range of auxiliary information into the inference process.<n>LASLA is specifically motivated by the challenges posed by network-structured data.<n>It also proves highly effective with other types of side information, such as spatial locations and multiple auxiliary sequences.
- Score: 4.441085538537119
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Incorporating auxiliary information alongside primary data can significantly enhance the accuracy of simultaneous inference. However, existing multiple testing methods face challenges in efficiently incorporating complex side information, especially when it differs in dimension or structure from the primary data, such as network side information. This paper introduces a locally adaptive structure learning algorithm (LASLA), a flexible framework designed to integrate a broad range of auxiliary information into the inference process. Although LASLA is specifically motivated by the challenges posed by network-structured data, it also proves highly effective with other types of side information, such as spatial locations and multiple auxiliary sequences. LASLA employs a $p$-value weighting approach, leveraging structural insights to derive data-driven weights that prioritize the importance of different hypotheses. Our theoretical analysis demonstrates that LASLA asymptotically controls the false discovery rate (FDR) under independent or weakly dependent $p$-values, and achieves enhanced power in scenarios where the auxiliary data provides valuable side information. Simulation studies are conducted to evaluate LASLA's numerical performance, and its efficacy is further illustrated through two real-world applications.
Related papers
- Fairness-Driven LLM-based Causal Discovery with Active Learning and Dynamic Scoring [1.5498930424110338]
Causal discovery (CD) plays a pivotal role in numerous scientific fields by clarifying the causal relationships that underlie phenomena observed in diverse disciplines.
Despite significant advancements in CD algorithms, their application faces challenges due to the high computational demands and complexities of large-scale data.
This paper introduces a framework that leverages Large Language Models (LLMs) for CD, utilizing a metadata-based approach akin to the reasoning processes of human experts.
arXiv Detail & Related papers (2025-03-21T22:58:26Z) - Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.
We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - An Information Criterion for Controlled Disentanglement of Multimodal Data [39.601584166020274]
Multimodal representation learning seeks to relate and decompose information inherent in multiple modalities.
Disentangled Self-Supervised Learning (DisentangledSSL) is a novel self-supervised approach for learning disentangled representations.
arXiv Detail & Related papers (2024-10-31T14:57:31Z) - Multimodal Structure Preservation Learning [13.868320911807587]
We propose Multimodal Structure Preservation Learning (MSPL) as a novel method of learning data representations.
We demonstrate the effectiveness of MSPL in uncovering latent structures in synthetic time series data and recovering clusters from whole genome sequencing and antimicrobial resistance data.
arXiv Detail & Related papers (2024-10-29T20:21:40Z) - Representation-Enhanced Neural Knowledge Integration with Application to Large-Scale Medical Ontology Learning [3.010503480024405]
We propose a theoretically guaranteed statistical framework, called RENKI, to enable simultaneous learning of relation types.
The proposed framework incorporates representation learning output into initial entity embedding of a neural network that approximates the score function for the knowledge graph.
We demonstrate the effect of weighting in the presence of heterogeneous relations and the benefit of incorporating representation learning in nonparametric models.
arXiv Detail & Related papers (2024-10-09T21:38:48Z) - Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
offline reinforcement learning algorithms have proven effective on datasets highly connected to the target downstream task.
We show that existing methods struggle with diverse data: their performance considerably deteriorates as data collected for related but different tasks is simply added to the offline buffer.
We show that scale, more than algorithmic considerations, is the key factor influencing performance.
arXiv Detail & Related papers (2024-03-19T18:57:53Z) - A Structural-Clustering Based Active Learning for Graph Neural Networks [16.85038790429607]
We propose the Structural-Clustering PageRank method for improved Active learning (SPA) specifically designed for graph-structured data.
SPA integrates community detection using the SCAN algorithm with the PageRank scoring method for efficient and informative sample selection.
arXiv Detail & Related papers (2023-12-07T14:04:38Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Consensus Knowledge Graph Learning via Multi-view Sparse Low Rank Block Model [8.374332740392978]
We propose a unified multi-view sparse low-rank block model (msLBM) framework, which enables simultaneous grouping and connectivity analysis.
Our results demonstrate that a consensus knowledge graph can be more accurately learned by leveraging multi-source datasets.
arXiv Detail & Related papers (2022-09-28T01:19:38Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
Domain adaptation is a popular paradigm in modern machine learning.
We present a method called Domain Adaptation Principal Component Analysis (DAPCA)
DAPCA finds a linear reduced data representation useful for solving the domain adaptation task.
arXiv Detail & Related papers (2022-08-28T21:10:56Z) - Federated Offline Reinforcement Learning [55.326673977320574]
We propose a multi-site Markov decision process model that allows for both homogeneous and heterogeneous effects across sites.
We design the first federated policy optimization algorithm for offline RL with sample complexity.
We give a theoretical guarantee for the proposed algorithm, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed.
arXiv Detail & Related papers (2022-06-11T18:03:26Z) - coVariance Neural Networks [119.45320143101381]
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning.
We propose a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs.
We show that VNN performance is indeed more stable than PCA-based statistical approaches.
arXiv Detail & Related papers (2022-05-31T15:04:43Z) - Do Deep Neural Networks Always Perform Better When Eating More Data? [82.6459747000664]
We design experiments from Identically Independent Distribution(IID) and Out of Distribution(OOD)
Under IID condition, the amount of information determines the effectivity of each sample, the contribution of samples and difference between classes determine the amount of class information.
Under OOD condition, the cross-domain degree of samples determine the contributions, and the bias-fitting caused by irrelevant elements is a significant factor of cross-domain.
arXiv Detail & Related papers (2022-05-30T15:40:33Z) - CRNNTL: convolutional recurrent neural network and transfer learning for
QSAR modelling [4.090810719630087]
We propose the convolutional recurrent neural network and transfer learning (CRNNTL) for QSAR modelling.
Our strategy takes advantages of both convolutional and recurrent neural networks for feature extraction, as well as the data augmentation method.
arXiv Detail & Related papers (2021-09-07T20:04:55Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Prequential MDL for Causal Structure Learning with Neural Networks [9.669269791955012]
We show that the prequential minimum description length principle can be used to derive a practical scoring function for Bayesian networks.
We obtain plausible and parsimonious graph structures without relying on sparsity inducing priors or other regularizers which must be tuned.
We discuss how the the prequential score relates to recent work that infers causal structure from the speed of adaptation when the observations come from a source undergoing distributional shift.
arXiv Detail & Related papers (2021-07-02T22:35:21Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.