論文の概要: Factual Consistency of Multilingual Pretrained Language Models
- arxiv url: http://arxiv.org/abs/2203.11552v1
- Date: Tue, 22 Mar 2022 09:15:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-24 01:40:56.211176
- Title: Factual Consistency of Multilingual Pretrained Language Models
- Title(参考訳): 多言語事前学習言語モデルのファクチュアル整合性
- Authors: Constanza Fierro, Anders S{\o}gaard
- Abstract要約: 多言語言語モデルがモノリンガルモデルよりも一貫性があるかどうかを検討する。
mBERT は英語のパラフレーズで BERT と同程度に矛盾している。
mBERT と XLM-R はどちらも、英語では高い一貫性を示しており、他の45の言語ではさらに矛盾している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained language models can be queried for factual knowledge, with
potential applications in knowledge base acquisition and tasks that require
inference. However, for that, we need to know how reliable this knowledge is,
and recent work has shown that monolingual English language models lack
consistency when predicting factual knowledge, that is, they fill-in-the-blank
differently for paraphrases describing the same fact. In this paper, we extend
the analysis of consistency to a multilingual setting. We introduce a resource,
mParaRel, and investigate (i) whether multilingual language models such as
mBERT and XLM-R are more consistent than their monolingual counterparts; and
(ii) if such models are equally consistent across languages. We find that mBERT
is as inconsistent as English BERT in English paraphrases, but that both mBERT
and XLM-R exhibit a high degree of inconsistency in English and even more so
for all the other 45 languages.
- Abstract(参考訳): 事前訓練された言語モデルは、知識ベース獲得や推論を必要とするタスクに潜在的な応用を伴って、事実知識を問うことができる。
しかし、そのためには、この知識がどの程度信頼できるのかを知る必要があり、最近の研究では、事実的知識を予測する際に、単言語英語モデルには一貫性が欠けていることが示されている。
本稿では,一貫性の分析を多言語に拡張する。
リソースであるmParaRelを導入し、調査する。
i) mBERT や XLM-R のような多言語言語モデルが単言語モデルよりも一貫性があるか否か。
(ii)そのようなモデルが言語間で等しく一致している場合。
mBERT は英語のパラフレーズでは BERT と同じくらい一貫性がないが、mBERT と XLM-R はどちらも英語では高い一貫性を示しており、他の45の言語ではさらに矛盾している。
関連論文リスト
- Thank You, Stingray: Multilingual Large Language Models Can Not (Yet) Disambiguate Cross-Lingual Word Sense [30.62699081329474]
本稿では,言語間感覚曖昧化のための新しいベンチマーク,StingrayBenchを紹介する。
インドネシア語とマレー語、インドネシア語とタガログ語、中国語と日本語、英語とドイツ語の4つの言語ペアで偽の友人を集めます。
各種モデルの解析において,高リソース言語に偏りが生じる傾向が見られた。
論文 参考訳(メタデータ) (2024-10-28T22:09:43Z) - How Do Multilingual Models Remember? Investigating Multilingual Factual Recall Mechanisms [50.13632788453612]
大規模言語モデル(LLM)は、事前訓練中に取得した膨大な事実知識を格納し、取得する。
これらのプロセスが他の言語や多言語 LLM にどのように一般化されるのかという問題は未解明のままである。
言語がリコールプロセスにおいてどのような役割を果たすのかを考察し,言語に依存しない,言語に依存したメカニズムの証拠を明らかにする。
論文 参考訳(メタデータ) (2024-10-18T11:39:34Z) - Evaluating Knowledge-based Cross-lingual Inconsistency in Large Language Models [16.942897938964638]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示している。
彼らの成功にもかかわらず、これらのモデルはしばしば異なる言語で同じ概念を処理する際に大きな矛盾を示す。
本研究は,LLMにおける言語間不整合の存在,これらの不整合が現れる特定の側面,LLMの言語間整合性と多言語機能との相関の3つの主要な疑問に焦点をあてる。
論文 参考訳(メタデータ) (2024-07-01T15:11:37Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance [6.907734681124986]
本稿では,多言語文脈における知識編集技術を検討することにより,言語的平等の必要性を戦略的に識別する。
Mistral, TowerInstruct, OpenHathi, Tamil-Llama, Kan-Llamaなどのモデルの性能を,英語,ドイツ語,フランス語,イタリア語,スペイン語,ヒンディー語,タミル語,カンナダ語を含む言語で評価した。
論文 参考訳(メタデータ) (2024-06-17T01:54:27Z) - Cross-Lingual Consistency of Factual Knowledge in Multilingual Language
Models [2.6626950367610402]
本研究では,多言語PLMにおける事実知識の言語間整合性(CLC)について検討する。
本稿では,言語間の知識一貫性を精度から独立して評価するために,ランク付けに基づく一貫性尺度(RankC)を提案する。
論文 参考訳(メタデータ) (2023-10-16T13:19:17Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - Cross-Linguistic Syntactic Evaluation of Word Prediction Models [25.39896327641704]
本稿では,ニューラルワード予測モデルの文法学習能力が言語によってどう異なるかを検討する。
CLAMSには、英語、フランス語、ドイツ語、ヘブライ語、ロシア語のサブバーブ協定の課題セットが含まれている。
CLAMSを用いてLSTM言語モデルと単言語および多言語BERTの評価を行う。
論文 参考訳(メタデータ) (2020-05-01T02:51:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。